Artykuły w czasopismach na temat „ZnO based Nanocomposites - Microstructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ZnO based Nanocomposites - Microstructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gallach, D., L. Le Brizoual, N. Gautier, M. D. Ynsa, V. Torres Costa, G. Ceccone, J. P. Landesman i M. Manso Silván. "Microstructure based optical modeling of ZnO- porous silicon permeated nanocomposites". Journal of Physics D: Applied Physics 48, nr 29 (26.06.2015): 295102. http://dx.doi.org/10.1088/0022-3727/48/29/295102.
Pełny tekst źródłaPlatonov, Vadim B., Marina N. Rumyantseva, Alexander S. Frolov, Alexey D. Yapryntsev i Alexander M. Gaskov. "High-temperature resistive gas sensors based on ZnO/SiC nanocomposites". Beilstein Journal of Nanotechnology 10 (26.07.2019): 1537–47. http://dx.doi.org/10.3762/bjnano.10.151.
Pełny tekst źródłaSanmugam, Anandhavelu, Dhanasekaran Vikraman, Sethuraman Venkatesan i Hui Joon Park. "Optical and Structural Properties of Solvent Free Synthesized Starch/Chitosan-ZnO Nanocomposites". Journal of Nanomaterials 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7536364.
Pełny tekst źródłaChabri, Sumit, Arnab Dhara, Bibhutibhushan Show, Deepanjana Adak, Arijit Sinha i Nillohit Mukherjee. "Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing". Catalysis Science & Technology 6, nr 9 (2016): 3238–52. http://dx.doi.org/10.1039/c5cy01573a.
Pełny tekst źródłaPervaiz, S., N. Kanwal, A. Shahzad, M. Saleem i I. A. Khan. "Thermal and Dielectric Behaviour of Polymer-Based Nanocomposites Flexible Sheets as Highly Stable Dielectric Materials". International Journal of Polymer Science 2023 (5.01.2023): 1–12. http://dx.doi.org/10.1155/2023/3892823.
Pełny tekst źródłaAlbiter, Elim, Aura S. Merlano, Elizabeth Rojas, José M. Barrera-Andrade, Ángel Salazar i Miguel A. Valenzuela. "Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review". Journal of Composites Science 5, nr 1 (25.12.2020): 4. http://dx.doi.org/10.3390/jcs5010004.
Pełny tekst źródłaLiu, Ming Ran. "Fabrication, Characterization and Investigation of Novel PVDF/ZnO and PVDF-TrFE/ZnO Nanocomposites with Enhanced β-Phase and Dielectricity". Materials Science Forum 977 (luty 2020): 277–82. http://dx.doi.org/10.4028/www.scientific.net/msf.977.277.
Pełny tekst źródłaSingh, Mandeep, Sanjeev Kumar, Shervin Zoghi, Yerli Cervantes, Debaki Sarkar, Saquib Ahmed, Shaestagir Chowdhury i Sankha Banerjee. "Fabrication and Characterization of Flexible Three-Phase ZnO-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications in Wearable Biomedical Devices". Journal of Composites Science 4, nr 3 (4.07.2020): 88. http://dx.doi.org/10.3390/jcs4030088.
Pełny tekst źródłaFarhadyar, Nazanin, i Mirabdullah Seyed Sadjadi. "Synthesis and Characterization of ZnO-SiO2/Epoxy Nanocomposite Coating by Sol-Gel Process". Journal of Nano Research 16 (styczeń 2012): 1–7. http://dx.doi.org/10.4028/www.scientific.net/jnanor.16.1.
Pełny tekst źródłaMu, Liwen, Jiahua Zhu, Jingdeng Fan, Zhongxin Zhou, Yijun Shi, Xin Feng, Huaiyuan Wang i Xiaohua Lu. "Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced with Zinc Oxide Nanoparticles". Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/545307.
Pełny tekst źródłaSantangelo, S., E. Fazio, F. Neri, G. Faggio, G. Messina i G. Neri. "Microstructure of anatase-based hybrid nanocomposites". Journal of Physics D: Applied Physics 46, nr 12 (21.02.2013): 125303. http://dx.doi.org/10.1088/0022-3727/46/12/125303.
Pełny tekst źródłaAHMED, S. M., A. A. A. DARWISH, E. A. EL-SABAGH, N. A. MANSOUR, D. E. ABULYAZIED i E. S. ALI. "PHYSICOCHEMICAL PROPERTIES OF PREPARED ZnO/ POLYSTYRENE NANOCOMPOSITES: STRUCTURE, MECHANICAL AND OPTICAL". Journal of Ovonic Research 16, nr 1 (styczeń 2020): 71–81. http://dx.doi.org/10.15251/jor.2020.161.71.
Pełny tekst źródłaLi, Xiaoyu, i Huaming Yang. "Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property". Applied Clay Science 100 (październik 2014): 43–49. http://dx.doi.org/10.1016/j.clay.2014.05.007.
Pełny tekst źródłaChitra, M., G. Mangamma, K. Uthayarani, N. Neelakandeswari i E. K. Girija. "Band gap engineering in ZnO based nanocomposites". Physica E: Low-dimensional Systems and Nanostructures 119 (maj 2020): 113969. http://dx.doi.org/10.1016/j.physe.2020.113969.
Pełny tekst źródłaNoothongkaew, Suttinart, Orathai Thumthan i Ki-Seok An. "UV-Photodetectors based on CuO/ZnO nanocomposites". Materials Letters 233 (grudzień 2018): 318–23. http://dx.doi.org/10.1016/j.matlet.2018.09.024.
Pełny tekst źródłaMerijs Meri, R., I. Bochkov, A. Grigalovca, J. Zicans, J. Grabis, R. Kotsilkova i I. Borovanska. "Nanocomposites Based on ZnO Modified Polymer Blends". Macromolecular Symposia 321-322, nr 1 (grudzień 2012): 130–34. http://dx.doi.org/10.1002/masy.201251122.
Pełny tekst źródłaD. HUSSEIN, Amel. "FABRICATION SENSORS BASED ON NANOCOMPOSITES ZnO/PVDF". MINAR International Journal of Applied Sciences and Technology 04, nr 03 (1.09.2022): 123–28. http://dx.doi.org/10.47832/2717-8234.12.13.
Pełny tekst źródłaAnandhi, P., V. Jawahar Senthil Kumar i S. Harikrishnan. "Improved electrochemical behavior of metal oxides-based nanocomposites for supercapacitor". Functional Materials Letters 12, nr 05 (17.09.2019): 1950064. http://dx.doi.org/10.1142/s1793604719500644.
Pełny tekst źródłaHui, Aiping, Fangfang Yang, Rui Yan, Yuru Kang i Aiqin Wang. "Palygorskite-Based Organic–Inorganic Hybrid Nanocomposite for Enhanced Antibacterial Activities". Nanomaterials 11, nr 12 (28.11.2021): 3230. http://dx.doi.org/10.3390/nano11123230.
Pełny tekst źródłaSharma, Prashant, Na-Yoon Jang, Jae-Won Lee, Bum Chul Park, Young Keun Kim i Nam-Hyuk Cho. "Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy". Pharmaceutics 11, nr 10 (26.09.2019): 493. http://dx.doi.org/10.3390/pharmaceutics11100493.
Pełny tekst źródłaHan, Lei, Wen Li, Chao Meng, Yan Chen i Shan Fan. "Charge transport mechanism of polyaniline/ZnO nanocomposites based on inorganic/organic heterojunctions". MATEC Web of Conferences 179 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201817902005.
Pełny tekst źródłaRahman, Mohammed M., Hadi M. Marwani, Faisal K. Algethami i Abdullah M. Asiri. "Xanthine sensor development based on ZnO–CNT, ZnO–CB, ZnO–GO and ZnO nanoparticles: an electrochemical approach". New Journal of Chemistry 41, nr 14 (2017): 6262–71. http://dx.doi.org/10.1039/c7nj00278e.
Pełny tekst źródłaAi, Xiaoqian, Shun Yan, Chao Lin, Kehong Lu, Yujie Chen i Ligang Ma. "Facile Fabrication of Highly Active CeO2@ZnO Nanoheterojunction Photocatalysts". Nanomaterials 13, nr 8 (14.04.2023): 1371. http://dx.doi.org/10.3390/nano13081371.
Pełny tekst źródłaMu, Haichuan, Yanming Gu i Haifen Xie. "Photocatalysis of Nickel-Based Graphene/Au/ZnO Nanocomposites". IEEE Sensors Journal 19, nr 14 (15.07.2019): 5376–88. http://dx.doi.org/10.1109/jsen.2019.2907712.
Pełny tekst źródłaLiao, Zhijia, Yao Yu, Zhenyu Yuan i Fanli Meng. "Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites". Chemosensors 9, nr 10 (6.10.2021): 284. http://dx.doi.org/10.3390/chemosensors9100284.
Pełny tekst źródłaKaur, Daljeet, Amardeep Bharti, Tripti Sharma i Charu Madhu. "Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications". International Journal of Optics 2021 (22.07.2021): 1–20. http://dx.doi.org/10.1155/2021/9950202.
Pełny tekst źródłaKannan, Karthik, Mostafa H. Sliem, Aboubakr M. Abdullah, Kishor Kumar Sadasivuni i Bijandra Kumar. "Fabrication of ZnO-Fe-MXene Based Nanocomposites for Efficient CO2 Reduction". Catalysts 10, nr 5 (15.05.2020): 549. http://dx.doi.org/10.3390/catal10050549.
Pełny tekst źródłaWu, Jiang, Xiaomei Zheng, Yuguang Lv, Yanjie Li i Guoliang Zhang. "Preparation and characterization of GO/ZnO/Ag nanocomposites and their synergistic antibacterial effect on Streptococcus mutans". AIP Advances 13, nr 3 (1.03.2023): 035313. http://dx.doi.org/10.1063/5.0137874.
Pełny tekst źródłaGeetha, P., E. Sai Ram, N. Anasuya i P. Sarita. "Facile Synthesis of Graphene Based ZnO Nanocomposite". Volume 4,Issue 5,2018 4, nr 5 (28.10.2018): 508–10. http://dx.doi.org/10.30799/jnst.158.18040512.
Pełny tekst źródłaSabry, Raad S., i Amel D. Hussein. "Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations". Materials Research Express 6, nr 10 (20.09.2019): 105549. http://dx.doi.org/10.1088/2053-1591/ab4296.
Pełny tekst źródłaTan, Thian Khoon, PoiSim Khiew, WeeSiong Chiu i ChinHua Chia. "Simple fabrication of magnetically separable ZnO-based photocatalyst nanocomposites". IOP Conference Series: Materials Science and Engineering 744 (10.02.2020): 012020. http://dx.doi.org/10.1088/1757-899x/744/1/012020.
Pełny tekst źródłaFaraji, Naser, i Zahra Hajimahdi. "Synthesis, characterisation, and antimicrobial activity of ZnO‐based nanocomposites". Micro & Nano Letters 13, nr 12 (grudzień 2018): 1667–71. http://dx.doi.org/10.1049/mnl.2018.5202.
Pełny tekst źródłaÖzgür Özer, İ., Ender Suvaci i Slavko Bernik. "Microstructure–property relationship in textured ZnO-based varistors". Acta Materialia 58, nr 12 (lipiec 2010): 4126–36. http://dx.doi.org/10.1016/j.actamat.2010.04.003.
Pełny tekst źródłaWang, Hao, Tohru Sekino, Takafumi Kusunose, Tadachika Nakayama i Koichi Niihara. "Properties and Microstructure of Mullite-Based Iron Nanocomposite". Key Engineering Materials 317-318 (sierpień 2006): 611–14. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.611.
Pełny tekst źródłaSathiya, S. M., Gunadhor S. Okram, S. Maria Dhivya, Subramanian Mugesh, Maruthamuthu Murugan i M. A. Jothi Rajan. "Synergistic Bactericidal Effect of Chitosan/Zinc Oxide Based Nanocomposites Against Staphylococcus aureus". Advanced Science Letters 24, nr 8 (1.08.2018): 5537–42. http://dx.doi.org/10.1166/asl.2018.12144.
Pełny tekst źródłaMiao, Yuxin, Guofeng Pan, Caixuan Sun, Ping He, Guanlong Cao, Chao Luo, Li Zhang i Hongliang Li. "Enhanced photoelectric responses induced by visible light of acetone gas sensors based on CuO-ZnO nanocomposites at about room temperature". Sensor Review 38, nr 3 (18.06.2018): 311–20. http://dx.doi.org/10.1108/sr-08-2017-0158.
Pełny tekst źródłaMa, Ligang, Xiaoqian Ai, Yujie Chen, Pengpeng Liu, Chao Lin, Kehong Lu, Wenjun Jiang, Jiaen Wu i Xiang Song. "Improved Photocatalytic Activity via n-Type ZnO/p-Type NiO Heterojunctions". Nanomaterials 12, nr 20 (18.10.2022): 3665. http://dx.doi.org/10.3390/nano12203665.
Pełny tekst źródłaJha, Pankaj Kumar, Chamorn Chawengkijwanich, Chonlada Pokum, Pichai Soisan i Kuaanan Techato. "Antibacterial Activities of Biosynthesized Zinc Oxide Nanoparticles and Silver-Zinc Oxide Nanocomposites using Camellia Sinensis Leaf Extract". Trends in Sciences 20, nr 3 (15.01.2023): 5649. http://dx.doi.org/10.48048/tis.2023.5649.
Pełny tekst źródłaWang, Caili, Jing Wang, Shaobin Wang, Runquan Yang i Huaifa Wang. "Preparation of Mg(OH)2/Calcined Fly Ash Nanocomposite for Removal of Heavy Metals from Aqueous Acidic Solutions". Materials 13, nr 20 (16.10.2020): 4621. http://dx.doi.org/10.3390/ma13204621.
Pełny tekst źródłaLi, Xiu Hong, Bernd Kretzschmar, Andreas Janke, Liane Häussler, Konrad Schneider i Manfred Stamm. "Investigation of Structure and Mechanical Behavior of Polyamide 6/ZnO and Polyamide 6/Al2O3 Nanocomposites". Advanced Materials Research 557-559 (lipiec 2012): 272–76. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.272.
Pełny tekst źródłaMoheimani, Seyed Kiomars, Mehran Dadkhah i Abdollah Saboori. "Development of Novel AlSi10Mg Based Nanocomposites: Microstructure, Thermal and Mechanical Properties". Metals 9, nr 9 (11.09.2019): 1000. http://dx.doi.org/10.3390/met9091000.
Pełny tekst źródłaAbebe, Buzuayehu, i H. C. Ananda Murthy. "Insights into ZnO-based doped porous nanocrystal frameworks". RSC Advances 12, nr 10 (2022): 5816–33. http://dx.doi.org/10.1039/d1ra09152b.
Pełny tekst źródłaLi, Xicuo, Joy K. Mishra, Soo-Duk Seul, Il Kim i Chang-Sik Ha. "Microstructure and properties of poly(butylene terephthalate) based nanocomposites". Composite Interfaces 11, nr 4 (styczeń 2004): 335–46. http://dx.doi.org/10.1163/1568554041738193.
Pełny tekst źródłaFarha, Ashraf H., Abdullah F. Al Naim i Shehab A. Mansour. "Thermal Degradation of Polystyrene (PS) Nanocomposites Loaded with Sol Gel-Synthesized ZnO Nanorods". Polymers 12, nr 9 (27.08.2020): 1935. http://dx.doi.org/10.3390/polym12091935.
Pełny tekst źródłaWahyuono, Ruri Agung, Christa Schmidt, Andrea Dellith, Jan Dellith, Martin Schulz, Martin Seyring, Markus Rettenmayr, Jonathan Plentz i Benjamin Dietzek. "ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties". Open Chemistry 14, nr 1 (1.01.2016): 158–69. http://dx.doi.org/10.1515/chem-2016-0016.
Pełny tekst źródłaKannisto, Erkka, M. Erkin Cura, Erkki Levänen i Simo Pekka Hannula. "Mechanical Properties of Alumina Based Nanocomposites". Key Engineering Materials 527 (listopad 2012): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.527.101.
Pełny tekst źródłaWang, Weiying, Jie Liu, Xibin Yu i Guangqian Yang. "Transparent Poly(methyl methacrylate)/ZnO Nanocomposites Based on KH570 Surface Modified ZnO Quantum Dots". Journal of Nanoscience and Nanotechnology 10, nr 8 (1.08.2010): 5196–201. http://dx.doi.org/10.1166/jnn.2010.2223.
Pełny tekst źródłaWu, Di, i Ali Akhtar. "Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 Nanoparticles". Molecules 28, nr 7 (4.04.2023): 3230. http://dx.doi.org/10.3390/molecules28073230.
Pełny tekst źródłaYaqoob, Asim Ali, Nur Habibah binti Mohd Noor, Albert Serrà i Mohamad Nasir Mohamad Ibrahim. "Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation". Nanomaterials 10, nr 5 (12.05.2020): 932. http://dx.doi.org/10.3390/nano10050932.
Pełny tekst źródłaFANG, YONGLING, ZHONGYU LI, SONG XU, DANAN HAN i DAYONG LU. "FABRICATION OF SQUARAINE DYE SENSITIZED SPHERICAL ZINC OXIDE NANOCOMPOSITES AND THEIR VISIBLE-LIGHT INDUCED PHOTOCATALYTIC ACTIVITY". Nano 09, nr 03 (kwiecień 2014): 1450036. http://dx.doi.org/10.1142/s1793292014500362.
Pełny tekst źródła