Artykuły w czasopismach na temat „Zn-air battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Zn-air battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Jianping, Bangqing Ni, Jiugang Hu, Zexing Wu i Wei Jin. "Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries". Journal of Materials Chemistry A 7, nr 39 (2019): 22507–13. http://dx.doi.org/10.1039/c9ta07669g.
Pełny tekst źródłaKatsaiti, Maria, Evangelos Papadogiannis, Vassilios Dracopoulos, Anastasios Keramidas i Panagiotis Lianos. "Solar charging of a Zn-air battery". Journal of Power Sources 555 (styczeń 2023): 232384. http://dx.doi.org/10.1016/j.jpowsour.2022.232384.
Pełny tekst źródłaSong, Dongmei, Changgang Hu, Zijian Gao, Bo Yang, Qingxia Li, Xinxing Zhan, Xin Tong i Juan Tian. "Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery". Materials 15, nr 17 (24.08.2022): 5837. http://dx.doi.org/10.3390/ma15175837.
Pełny tekst źródłaOkobira, Tatsuya, Dang-Trang Nguyen i Kozo Taguchi. "Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance". International Journal of Applied Electromagnetics and Mechanics 64, nr 1-4 (10.12.2020): 57–64. http://dx.doi.org/10.3233/jae-209307.
Pełny tekst źródłaMohamad, A. A. "Zn/gelled 6M KOH/O2 zinc–air battery". Journal of Power Sources 159, nr 1 (wrzesień 2006): 752–57. http://dx.doi.org/10.1016/j.jpowsour.2005.10.110.
Pełny tekst źródłaWang, Yueyang, Jie Liu, Yuping Feng, Ningyuan Nie, Mengmeng Hu, Jiaqi Wang, Guangxing Pan, Jiaheng Zhang i Yan Huang. "An intrinsically stretchable and compressible Zn–air battery". Chemical Communications 56, nr 35 (2020): 4793–96. http://dx.doi.org/10.1039/d0cc00823k.
Pełny tekst źródłaDeyab, M. A., i G. Mele. "Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery". Journal of Power Sources 443 (grudzień 2019): 227264. http://dx.doi.org/10.1016/j.jpowsour.2019.227264.
Pełny tekst źródłaFeng, Yunxiao, Changdong Chen, Yanling Li, Ming La i Yongjun Han. "Zn/CoP polyhedron as electrocatalyst for water splitting and Zn-air battery". International Journal of Electrochemical Science 18, nr 6 (czerwiec 2023): 100153. http://dx.doi.org/10.1016/j.ijoes.2023.100153.
Pełny tekst źródłaMarsudi, Maradhana Agung, Yuanyuan Ma, Bagas Prakoso, Jayadi Jaya Hutani, Arie Wibowo, Yun Zong, Zhaolin Liu i Afriyanti Sumboja. "Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries". Catalysts 10, nr 1 (1.01.2020): 64. http://dx.doi.org/10.3390/catal10010064.
Pełny tekst źródłaDeiss, E., F. Holzer i O. Haas. "Modeling of an electrically rechargeable alkaline Zn–air battery". Electrochimica Acta 47, nr 25 (wrzesień 2002): 3995–4010. http://dx.doi.org/10.1016/s0013-4686(02)00316-x.
Pełny tekst źródłaPhuc, Nguyen Huu Huy, Tran Anh Tu, Luu Cam Loc, Cao Xuan Viet, Pham Thi Thuy Phuong, Nguyen Tri i Le Van Thang. "A Review of Bifunctional Catalysts for Zinc-Air Batteries". Nanoenergy Advances 3, nr 1 (2.02.2023): 13–47. http://dx.doi.org/10.3390/nanoenergyadv3010003.
Pełny tekst źródłaFang, Weiguang, Zhiman Bai, Xinxin Yu, Wen Zhang i Mingzai Wu. "Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn–air batteries". Nanoscale 12, nr 21 (2020): 11746–58. http://dx.doi.org/10.1039/d0nr02376k.
Pełny tekst źródłaPonnada, Sreekanth, Bhagirath Saini, Rahul Singhal i Rakesh K. Sharma. "(Digital Presentation) Intercalated Layered TaSi2N4 Electrodes of Zn–Air Battery". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 22. http://dx.doi.org/10.1149/ma2022-02122mtgabs.
Pełny tekst źródłaMasri, M. N., M. F. M. Nazeri i A. A. Mohamad. "Sago Gel Polymer Electrolyte for Zinc-Air Battery". Advances in Science and Technology 72 (październik 2010): 305–8. http://dx.doi.org/10.4028/www.scientific.net/ast.72.305.
Pełny tekst źródłaWang, Min, Xiaoxiao Huang, Zhiqian Yu, Pei Zhang, Chunyang Zhai, Hucheng Song, Jun Xu i Kunji Chen. "A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts". Nanomaterials 12, nr 22 (18.11.2022): 4069. http://dx.doi.org/10.3390/nano12224069.
Pełny tekst źródłaLiu, Ning, Honglu Hu, Xinxin Xu i Qiang Wang. "Hybrid battery integrated by Zn-air and Zn-Co3O4 batteries at cell level". Journal of Energy Chemistry 49 (październik 2020): 375–83. http://dx.doi.org/10.1016/j.jechem.2020.02.037.
Pełny tekst źródłaNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga i Sándor Kéki. "“In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery". Batteries 8, nr 11 (3.11.2022): 212. http://dx.doi.org/10.3390/batteries8110212.
Pełny tekst źródłaLee, Sang-Heon, Yong-Joo Jeong, Si-Hyoun Lim, Eun-Ah Lee, Cheol-Woo Yi i Keon Kim. "The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?" Journal of the Korean Electrochemical Society 13, nr 1 (27.02.2010): 45–49. http://dx.doi.org/10.5229/jkes.2010.13.1.045.
Pełny tekst źródłaLiu, Hang, Zhongwen Mai, Xinxin Xu i Yi Wang. "A Co-MOF-derived oxygen-vacancy-rich Co3O4-based composite as a cathode material for hybrid Zn batteries". Dalton Transactions 49, nr 9 (2020): 2880–87. http://dx.doi.org/10.1039/c9dt04682h.
Pełny tekst źródłaHan, Li-Na, Li-Bing Lv, Qian-Cheng Zhu, Xiao Wei, Xin-Hao Li i Jie-Sheng Chen. "Ultra-durable two-electrode Zn–air secondary batteries based on bifunctional titania nanocatalysts: a Co2+ dopant boosts the electrochemical activity". Journal of Materials Chemistry A 4, nr 20 (2016): 7841–47. http://dx.doi.org/10.1039/c6ta02143c.
Pełny tekst źródłaBera, Raj Kumar, Hongjun Park i Ryong Ryoo. "Co3O4 nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery". Journal of Materials Chemistry A 7, nr 16 (2019): 9988–96. http://dx.doi.org/10.1039/c9ta01482a.
Pełny tekst źródłaKecsmár, Gergő, Máté Czagány, Péter Baumli i Zsolt Dobó. "The influence of different air electrode structures to discharge characteristics in rechargeable Zn-air battery". Analecta Technica Szegedinensia 17, nr 2 (27.04.2023): 1–8. http://dx.doi.org/10.14232/analecta.2023.2.1-8.
Pełny tekst źródłaLv, Xiaodong, Ming Chen, Hideo Kimura, Wei Du i Xiaoyang Yang. "Biomass-Derived Carbon Materials for the Electrode of Metal–Air Batteries". International Journal of Molecular Sciences 24, nr 4 (13.02.2023): 3713. http://dx.doi.org/10.3390/ijms24043713.
Pełny tekst źródłaIshihara, T., L. M. Guo, T. Miyano, Y. Inoishi, K. Kaneko i S. Ida. "Mesoporous La0.6Ca0.4CoO3 perovskites with large surface areas as stable air electrodes for rechargeable Zn–air batteries". Journal of Materials Chemistry A 6, nr 17 (2018): 7686–92. http://dx.doi.org/10.1039/c8ta00426a.
Pełny tekst źródłaIshihara, Tatsumi, i Yuiko Inoishi. "Air Electrode Property of Doped NiCo2O4 Based Oxide for Rechargeable Zn-Air Battery". ECS Meeting Abstracts MA2020-02, nr 2 (23.11.2020): 491. http://dx.doi.org/10.1149/ma2020-022491mtgabs.
Pełny tekst źródłaChang, Chia-Che, Yi-Cheng Lee, Hsiang-Ju Liao, Yu-Ting Kao, Ji-Yao An i Di-Yan Wang. "Flexible Hybrid Zn–Ag/Air Battery with Long Cycle Life". ACS Sustainable Chemistry & Engineering 7, nr 2 (18.12.2018): 2860–66. http://dx.doi.org/10.1021/acssuschemeng.8b06328.
Pełny tekst źródłaSantos, F., A. Urbina, J. Abad, R. López, C. Toledo i A. J. Fernández Romero. "Environmental and economical assessment for a sustainable Zn/air battery". Chemosphere 250 (lipiec 2020): 126273. http://dx.doi.org/10.1016/j.chemosphere.2020.126273.
Pełny tekst źródłaAndrade, Tatiana Santos, Vassilios Dracopoulos, Márcio César Pereira i Panagiotis Lianos. "Unmediated photoelectrochemical charging of a Zn-air battery: The realization of the photoelectrochemical battery". Journal of Electroanalytical Chemistry 878 (grudzień 2020): 114709. http://dx.doi.org/10.1016/j.jelechem.2020.114709.
Pełny tekst źródłaDilshad, Khaleel Ahmed J., i M. K. Rabinal. "Rationally Designed Zn-Anode and Co3O4-Cathode Nanoelectrocatalysts for an Efficient Zn–Air Battery". Energy & Fuels 35, nr 15 (26.07.2021): 12588–98. http://dx.doi.org/10.1021/acs.energyfuels.1c01108.
Pełny tekst źródłaHyun, Suyeon, Apichat Saejio i Sangaraju Shanmugam. "Pd nanoparticles deposited on Co(OH)2 nanoplatelets as a bifunctional electrocatalyst and their application in Zn–air and Li–O2 batteries". Nanoscale 12, nr 34 (2020): 17858–69. http://dx.doi.org/10.1039/d0nr05403h.
Pełny tekst źródłaHuang, Jianhang, Zhanhong Yang, Ruijuan Wang, Zheng Zhang, Zhaobin Feng i Xiaoe Xie. "Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery". Journal of Materials Chemistry A 3, nr 14 (2015): 7429–36. http://dx.doi.org/10.1039/c5ta00279f.
Pełny tekst źródłaAndrade, Tatiana S., Antero R. S. Neto, Francisco G. E. Nogueira, Luiz C. A. Oliveira, Márcio C. Pereira i Panagiotis Lianos. "Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode". Catalysts 12, nr 10 (15.10.2022): 1240. http://dx.doi.org/10.3390/catal12101240.
Pełny tekst źródłaChristensen, Mathias K., Jette Katja Mathiesen, Søren Bredmose Simonsen i Poul Norby. "Transformation and migration in secondary zinc–air batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography". Journal of Materials Chemistry A 7, nr 11 (2019): 6459–66. http://dx.doi.org/10.1039/c8ta11554k.
Pełny tekst źródłaLorca, Sebastián, Florencio Santos, Javier Padilla, J. J. López Cascales i Antonio J. Fernández Romero. "Importance of Continuous and Simultaneous Monitoring of Both Electrode Voltages during Discharge/Charge Battery Tests: Application to Zn-Based Batteries". Batteries 8, nr 11 (7.11.2022): 221. http://dx.doi.org/10.3390/batteries8110221.
Pełny tekst źródłaMeng, Jing, Fangming Liu, Zhenhua Yan, Fangyi Cheng, Fujun Li i Jun Chen. "Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries". Inorganic Chemistry Frontiers 5, nr 9 (2018): 2167–73. http://dx.doi.org/10.1039/c8qi00404h.
Pełny tekst źródłaLuo, Xinyi, Zhaoxu Li, Meifang Luo, Chaozhong Guo, Lingtao Sun, Shijian Lan, Ruyue Luo, Lan Huang, Yuan Qin i Zhongli Luo. "Boosting the primary Zn–air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures". Journal of Materials Chemistry A 8, nr 19 (2020): 9832–42. http://dx.doi.org/10.1039/d0ta02741c.
Pełny tekst źródłaWang, Yanqiu, Baoying Yu, Kang Liu, Xuetao Yang, Min Liu, Ting-Shan Chan, Xiaoqing Qiu, Jie Li i Wenzhang Li. "Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal–air batteries". Journal of Materials Chemistry A 8, nr 4 (2020): 2131–39. http://dx.doi.org/10.1039/c9ta12171d.
Pełny tekst źródłaYang, Jian, Le Chang, Heng Guo, Jiachen Sun, Jingyin Xu, Fei Xiang, Yanning Zhang i in. "Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries". Journal of Materials Chemistry A 8, nr 3 (2020): 1229–37. http://dx.doi.org/10.1039/c9ta11654k.
Pełny tekst źródłaWang, Yongxia, Mingjie Wu, Jun Li, Haitao Huang i Jinli Qiao. "In situ growth of CoP nanoparticles anchored on (N,P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery". Journal of Materials Chemistry A 8, nr 36 (2020): 19043–49. http://dx.doi.org/10.1039/d0ta06435a.
Pełny tekst źródłaDeng, Jie, Lei Wang, Fangming Jin i Yun Hang Hu. "Metal-free surface-microporous graphene electrocatalysts from CO2 for rechargeable all-solid-state zinc–air batteries". Journal of Materials Chemistry A 9, nr 16 (2021): 10081–87. http://dx.doi.org/10.1039/d1ta01001h.
Pełny tekst źródłaWang, Jie, Zexing Wu, Lili Han, Cuijuan Xuan, Jing Zhu, Weiping Xiao, Jianzhong Wu, Huolin L. Xin i Deli Wang. "A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes". Sustainable Energy & Fuels 1, nr 4 (2017): 823–31. http://dx.doi.org/10.1039/c7se00085e.
Pełny tekst źródłaZhang, Yijie, Yong Zhao, Muwei Ji, Han-ming Zhang, Minghui Zhang, Hang Zhao, Mengsi Cheng i in. "Synthesis of Fe3C@porous carbon nanorods via carbonizing Fe complexes for oxygen reduction reaction and Zn–air battery". Inorganic Chemistry Frontiers 7, nr 4 (2020): 889–96. http://dx.doi.org/10.1039/c9qi01544b.
Pełny tekst źródłaLuo, Xinlei, Ziheng Zheng, Bingxue Hou, Xianpan Xie i Cheng Cheng Wang. "Facile synthesis of a MOF-derived Co–N–C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn–air batteries". RSC Advances 13, nr 27 (2023): 18888–97. http://dx.doi.org/10.1039/d3ra02191b.
Pełny tekst źródłaWang, Kun, Zhuohua Mo, Songtao Tang, Mingyang Li, Hao Yang, Bei Long, Yi Wang, Shuqin Song i Yexiang Tong. "Photo-enhanced Zn–air batteries with simultaneous highly efficient in situ H2O2 generation for wastewater treatment". Journal of Materials Chemistry A 7, nr 23 (2019): 14129–35. http://dx.doi.org/10.1039/c9ta04253a.
Pełny tekst źródłaWang, Chengcheng, Ziheng Zheng, Zian Chen, Xinlei Luo, Bingxue Hou, Mortaza Gholizadeh, Xiang Gao, Xincan Fan i Zanxiong Tan. "Enhancement on PrBa0.5Sr0.5Co1.5Fe0.5O5 Electrocatalyst Performance in the Application of Zn-Air Battery". Catalysts 12, nr 7 (20.07.2022): 800. http://dx.doi.org/10.3390/catal12070800.
Pełny tekst źródłaTomboc, Gracita M., Peng Yu, Taehyun Kwon, Kwangyeol Lee i Jinghong Li. "Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery". APL Materials 8, nr 5 (1.05.2020): 050905. http://dx.doi.org/10.1063/5.0005137.
Pełny tekst źródłaNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga i Sándor Kéki. "Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode". Electrochimica Acta 368 (luty 2021): 137592. http://dx.doi.org/10.1016/j.electacta.2020.137592.
Pełny tekst źródłaHe, Yingjie, Drew Aasen, Haoyang Yu, Matthew Labbe, Douglas G. Ivey i Jonathan G. C. Veinot. "Mn3O4 nanoparticle-decorated hollow mesoporous carbon spheres as an efficient catalyst for oxygen reduction reaction in Zn–air batteries". Nanoscale Advances 2, nr 8 (2020): 3367–74. http://dx.doi.org/10.1039/d0na00428f.
Pełny tekst źródłaTong, Fanglei, Xize Chen, Shanghai Wei, Jenny Malmström, Joseph Vella i Wei Gao. "Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery". Journal of Magnesium and Alloys 9, nr 6 (listopad 2021): 1967–76. http://dx.doi.org/10.1016/j.jma.2021.08.022.
Pełny tekst źródłaHao, Yongchao, Yuqi Xu, Nana Han, Junfeng Liu i Xiaoming Sun. "Boosting the bifunctional electrocatalytic oxygen activities of CoOxnanoarrays with a porous N-doped carbon coating and their application in Zn–air batteries". Journal of Materials Chemistry A 5, nr 34 (2017): 17804–10. http://dx.doi.org/10.1039/c7ta03996d.
Pełny tekst źródła