Gotowa bibliografia na temat „Zn-air battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Zn-air battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Zn-air battery"
Chen, Jianping, Bangqing Ni, Jiugang Hu, Zexing Wu i Wei Jin. "Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries". Journal of Materials Chemistry A 7, nr 39 (2019): 22507–13. http://dx.doi.org/10.1039/c9ta07669g.
Pełny tekst źródłaKatsaiti, Maria, Evangelos Papadogiannis, Vassilios Dracopoulos, Anastasios Keramidas i Panagiotis Lianos. "Solar charging of a Zn-air battery". Journal of Power Sources 555 (styczeń 2023): 232384. http://dx.doi.org/10.1016/j.jpowsour.2022.232384.
Pełny tekst źródłaSong, Dongmei, Changgang Hu, Zijian Gao, Bo Yang, Qingxia Li, Xinxing Zhan, Xin Tong i Juan Tian. "Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery". Materials 15, nr 17 (24.08.2022): 5837. http://dx.doi.org/10.3390/ma15175837.
Pełny tekst źródłaOkobira, Tatsuya, Dang-Trang Nguyen i Kozo Taguchi. "Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance". International Journal of Applied Electromagnetics and Mechanics 64, nr 1-4 (10.12.2020): 57–64. http://dx.doi.org/10.3233/jae-209307.
Pełny tekst źródłaMohamad, A. A. "Zn/gelled 6M KOH/O2 zinc–air battery". Journal of Power Sources 159, nr 1 (wrzesień 2006): 752–57. http://dx.doi.org/10.1016/j.jpowsour.2005.10.110.
Pełny tekst źródłaWang, Yueyang, Jie Liu, Yuping Feng, Ningyuan Nie, Mengmeng Hu, Jiaqi Wang, Guangxing Pan, Jiaheng Zhang i Yan Huang. "An intrinsically stretchable and compressible Zn–air battery". Chemical Communications 56, nr 35 (2020): 4793–96. http://dx.doi.org/10.1039/d0cc00823k.
Pełny tekst źródłaDeyab, M. A., i G. Mele. "Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery". Journal of Power Sources 443 (grudzień 2019): 227264. http://dx.doi.org/10.1016/j.jpowsour.2019.227264.
Pełny tekst źródłaFeng, Yunxiao, Changdong Chen, Yanling Li, Ming La i Yongjun Han. "Zn/CoP polyhedron as electrocatalyst for water splitting and Zn-air battery". International Journal of Electrochemical Science 18, nr 6 (czerwiec 2023): 100153. http://dx.doi.org/10.1016/j.ijoes.2023.100153.
Pełny tekst źródłaMarsudi, Maradhana Agung, Yuanyuan Ma, Bagas Prakoso, Jayadi Jaya Hutani, Arie Wibowo, Yun Zong, Zhaolin Liu i Afriyanti Sumboja. "Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries". Catalysts 10, nr 1 (1.01.2020): 64. http://dx.doi.org/10.3390/catal10010064.
Pełny tekst źródłaDeiss, E., F. Holzer i O. Haas. "Modeling of an electrically rechargeable alkaline Zn–air battery". Electrochimica Acta 47, nr 25 (wrzesień 2002): 3995–4010. http://dx.doi.org/10.1016/s0013-4686(02)00316-x.
Pełny tekst źródłaRozprawy doktorskie na temat "Zn-air battery"
Hsu, Shih-Hua, i 許世華. "A study of zinc corrosion and electrodeposition- properties of Zn-Ni battery and Zn-Air battery". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/80962084659440947996.
Pełny tekst źródła國立清華大學
材料科學工程學系
89
Because zinc has high energy capacity and very cheap, we focus on its application for secondary battery in recent years. But there are some disadvantages for zinc electrode on actual application such as: zinc corrosion in concentrated alkaline solutions and zinc oxide produced after discharging dissolved in electrolyte, it will lower energy capacity. The purpose of this study is to discuss zinc corrosion while using electrolyte which was made by 5M,6M and 7M concentrated potassium hydroxide solution and some additives :EDTA, poly ethylene glycol(PEG)200, poly ethylene glycol(PEG)300 and poly ethylene glycol(PEG)600 etc. The negative electrodes using in testing cycle life of battery were made by electrodeposition and the electrolytes were the same as using in zinc corrosion. We expect our electrolyte has two function of preventing zinc corrosion and maintaining discharge capacity. Our result shows that higher average molecule weight of poly ethylene glycol has better preventing zinc corrosion. After a series of cycle life testing, it shows that 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) added in 6M concentrated potassium hydroxide solution saturated by zinc oxide has good performance for maintaining high discharge capacity. We put zinc electrode which is made by electrodeposition in 6M concentrated potassium hydroxide solution saturated by zinc oxide and added by 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) in some different conditions, charged by several current 100mA, 200mA and 300mA and discharged by the same current, 0.15A, in order to find out the suitable condition for cycling. It shows that higher charging current has better performance for keeping discharge capacity. Finally, we use zinc electrode which is made by electrodeposition in zinc-air battery application, it has discharge capacity, 573mAh/g. For testing polarization on zinc-air battery, we change some different constant discharge current, 1mA, 5mA, 10mA and 20mA to measuring the effects of battery voltage.
Części książek na temat "Zn-air battery"
Peng, Shengjie. "Electrolyte of Zn-Air Battery". W Zinc-Air Batteries, 175–89. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8214-9_5.
Pełny tekst źródłaPeng, Shengjie. "Anode of Zn-Air Battery". W Zinc-Air Batteries, 157–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8214-9_4.
Pełny tekst źródłaPeng, Shengjie, i P. Robert Ilango. "Electrospinning of Nanofibers for Zn-Air Battery". W Electrospinning of Nanofibers for Battery Applications, 121–39. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1428-9_6.
Pełny tekst źródłaLiu, Yiyang, Tasnim Munshi, Jennifer Hack, Ian Scowen, Paul R. Shearing, Guanjie He i Dan J. L. Brett. "Biowaste-Derived Components for Zn–Air Battery". W Energy from Waste, 313–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178354-25.
Pełny tekst źródłaWu, Mingjie, Gaixia Zhang, Hariprasad Ranganathan i Shuhui Sun. "Zn-Air Battery Application of Atomically Dispersed Metallic Materials". W Atomically Dispersed Metallic Materials for Electrochemical Energy Technologies, 209–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003153436-6.
Pełny tekst źródłaZhang, Lei, Yuan-Xin Zhu i Guang-Zhi Hu. "MOFs-derived hollow structure as a versatile platform for highly-efficient multifunctional electrocatalyst toward overall water-splitting and Zn-air battery". W Nanomaterials for Electrocatalysis, 251–70. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85710-9.00004-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Zn-air battery"
Makyeyeva, I. S., i A. S. Katashinskii. "MnO2 nanoparticles as a catalyst for the air electrode of a Zn/air battery". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190235.
Pełny tekst źródłaAlcázar, Héctor B. Sierra, i Phu D. Nguyen. "Additives to Increase the Discharge Capacity of the Moving Bed Zn/Air Battery". W 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9397.
Pełny tekst źródłaMahbub, Muhammad Adib Abdillah, Anggraeni Mulyadewi, Celfi Gustine Adios i Afriyanti Sumboja. "Sustainable chicken manure-derived carbon as a metal-free bifunctional electrocatalyst in Zn-air battery". W THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL AND TECHNOLOGY (ICAMT) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106289.
Pełny tekst źródłaZamri, S. N. A. M., M. N. Masri, M. H. Hussin, W. M. I. W. Ismail i M. A. Sulaiman. "Electrochemical properties of Bacto-agar and commercial agar applying in porous zinc anode for Zn-air battery". W MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5089352.
Pełny tekst źródłaThakur, Pallavi, i Tharangattu N. Narayanan. "Towards Advanced Rechargeable Metal (Zn, Li)-air (O2) Battery Systems Using Electrode and Electrolyte Engineering". W 2022 IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2022. http://dx.doi.org/10.1109/icee56203.2022.10118265.
Pełny tekst źródła