Artykuły w czasopismach na temat „Zinc metal battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Zinc metal battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Qian, Shuxian Zhuang, Xin You, Jinpeng Zhang, Ao Xie, Yu Chen, Yang Tang i in. "Honeycomb-like carbon with doping of a transition-metal and nitrogen for highly efficient zinc–air battery and zinc-ion battery". Sustainable Energy & Fuels 6, nr 1 (2022): 188–96. http://dx.doi.org/10.1039/d1se01427g.
Pełny tekst źródłaOkobira, Tatsuya, Dang-Trang Nguyen i Kozo Taguchi. "Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance". International Journal of Applied Electromagnetics and Mechanics 64, nr 1-4 (10.12.2020): 57–64. http://dx.doi.org/10.3233/jae-209307.
Pełny tekst źródłaAndrade, Tatiana S., Antero R. S. Neto, Francisco G. E. Nogueira, Luiz C. A. Oliveira, Márcio C. Pereira i Panagiotis Lianos. "Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode". Catalysts 12, nr 10 (15.10.2022): 1240. http://dx.doi.org/10.3390/catal12101240.
Pełny tekst źródłaZhang, Emma Qingnan, i Luping Tang. "Rechargeable Concrete Battery". Buildings 11, nr 3 (9.03.2021): 103. http://dx.doi.org/10.3390/buildings11030103.
Pełny tekst źródłaPhuc, Nguyen Huu Huy, Tran Anh Tu, Luu Cam Loc, Cao Xuan Viet, Pham Thi Thuy Phuong, Nguyen Tri i Le Van Thang. "A Review of Bifunctional Catalysts for Zinc-Air Batteries". Nanoenergy Advances 3, nr 1 (2.02.2023): 13–47. http://dx.doi.org/10.3390/nanoenergyadv3010003.
Pełny tekst źródłaMathialagan, Kowsalya, Saranya T, Ammu Surendran, Ditty Dixon, Nishanthi S.T. i Aiswarya Bhaskar. "(Digital Presentation) Development of Bifunctional Oxygen Electrocatalysts for Electrically Rechargeable Zinc-Air Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 403. http://dx.doi.org/10.1149/ma2022-024403mtgabs.
Pełny tekst źródłaKheawhom, Soorathep, i Sira Suren. "Printed air cathode for flexible and high energy density zinc-air battery". MRS Advances 1, nr 53 (2016): 3585–91. http://dx.doi.org/10.1557/adv.2016.443.
Pełny tekst źródłaXu, Xiaoyun, Songmei Li, Huibo Yan, Juan Du, Shubin Yang i Bin Li. "Manipulating underpotential deposition nucleation of zinc deposition towards high-stable zinc metal battery". Journal of Energy Storage 72 (listopad 2023): 108625. http://dx.doi.org/10.1016/j.est.2023.108625.
Pełny tekst źródłaMa, Nengyan, Peijun Wu, Yixue Wu, Donghao Jiang i Gangtie Lei. "Progress and perspective of aqueous zinc-ion battery". Functional Materials Letters 12, nr 05 (17.09.2019): 1930003. http://dx.doi.org/10.1142/s1793604719300032.
Pełny tekst źródłaMadan, Chetna, i Aditi Halder. "Nonprecious Multi-Principal Metal Systems As the Air Electrode for a Solid-State Rechargeable Zinc-Air Battery". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2327. http://dx.doi.org/10.1149/ma2022-02642327mtgabs.
Pełny tekst źródłaXu, Lei, Mi Yan, Xinying Wang, Wei Li i Jinhui Peng. "The influences of silver and zinc addition on the electrochemical performances of the Pb–Ca–Sn Grids for lead acid batteries". Metallurgical Research & Technology 115, nr 6 (2018): 609. http://dx.doi.org/10.1051/metal/2018002.
Pełny tekst źródłaWang, Shurui. "Research Status and Optimization Methods of Zinc Ion Battery". MATEC Web of Conferences 382 (2023): 01015. http://dx.doi.org/10.1051/matecconf/202338201015.
Pełny tekst źródłaLin, Ming-Hsien, Chen-Jui Huang, Pai-Hsiang Cheng, Ju-Hsiang Cheng i Chun-Chieh Wang. "Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: mechanism studies of dendrite suppression and corrosion inhibition". Journal of Materials Chemistry A 8, nr 39 (2020): 20637–49. http://dx.doi.org/10.1039/d0ta06929a.
Pełny tekst źródłaWang, Runkang. "Controlled Construction and Properties Study of PDMS Coatings for Stabilizing Zinc Metal Anode". Highlights in Science, Engineering and Technology 21 (4.12.2022): 286–97. http://dx.doi.org/10.54097/hset.v21i.3174.
Pełny tekst źródłaWu, Zhenrui, Evan Hansen i Jian Liu. "An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability". ECS Meeting Abstracts MA2022-01, nr 1 (7.07.2022): 14. http://dx.doi.org/10.1149/ma2022-01114mtgabs.
Pełny tekst źródłaBaek, Sangha, Jae Min Park, Taehun Kang i Ho Seok Park. "Enhancing Aqueous Zinc Metal Anode Reversibility with the Nucleation Sites Given by Oxidized Black Phosphoruspresentation". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 5. http://dx.doi.org/10.1149/ma2022-0215mtgabs.
Pełny tekst źródłaLi, Yuanshun, Brian Washington, Gabriel Goenaga i Thomas A. Zawodzinski. "Improve the Zinc Slurry-Air Battery Performance: New Operational Mode to Separate Effects". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 156. http://dx.doi.org/10.1149/ma2022-022156mtgabs.
Pełny tekst źródłaAvraamides, J. "The Iodine Propanenitrile Water-System. Effects of Added Salts on Distribution Coefficient and Conductivity". Australian Journal of Chemistry 40, nr 1 (1987): 209. http://dx.doi.org/10.1071/ch9870209.
Pełny tekst źródłaChang, Haiyang, Shanshan Cong, Lei Wang i Cheng Wang. "Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Batteries". Nanomaterials 12, nr 21 (30.10.2022): 3834. http://dx.doi.org/10.3390/nano12213834.
Pełny tekst źródłaEbin, Burçak, Martina Petranikova, Britt-Marie Steenari i Christian Ekberg. "Recovery of industrial valuable metals from household battery waste". Waste Management & Research: The Journal for a Sustainable Circular Economy 37, nr 2 (11.01.2019): 168–75. http://dx.doi.org/10.1177/0734242x18815966.
Pełny tekst źródłaShakeriHosseinabad, Fatemeh, Diba Behnoud Far i Edward P. L. Roberts. "A Two-Dimensional Transient Model to Investigate the Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery". ECS Meeting Abstracts MA2022-01, nr 4 (7.07.2022): 565. http://dx.doi.org/10.1149/ma2022-014565mtgabs.
Pełny tekst źródłaT, Saranya, Kowsalya Mathialagan, Ditty Dixon, Aiswarya Bhaskar i S. T. Nishanthi. "MOF-Derived Nanoporous Carbon As an Efficient Bifunctional Oxygen Electrocatalyst for Erzabs". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 508. http://dx.doi.org/10.1149/ma2022-024508mtgabs.
Pełny tekst źródłaWang, Xuyang, Alina V. Kirianova, Xieyu Xu, Yanguang Liu, Olesya O. Kapitanova i Marat O. Gallyamov. "Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries". Nanotechnology 33, nr 12 (24.12.2021): 125401. http://dx.doi.org/10.1088/1361-6528/ac40bf.
Pełny tekst źródłaQian, Xinye, Lina Jin, Shanwen Wang, Shanshan Yao, Dewei Rao, Xiangqian Shen, Xiaoming Xi i Jun Xiang. "Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium–sulfur battery". RSC Advances 6, nr 97 (2016): 94629–35. http://dx.doi.org/10.1039/c6ra19356k.
Pełny tekst źródłaRoberts, Edward, Mohammad Rahimi, Asghar Molaei Dehkordi, Fatemeh ShakeriHosseinabad, Maedeh Pahlevaninezhad i Ashutosh Kumar Singh. "(Invited) Redox Flow Battery Innovation". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 483. http://dx.doi.org/10.1149/ma2022-013483mtgabs.
Pełny tekst źródłaZheng, Jingxu, Qing Zhao, Tian Tang, Jiefu Yin, Calvin D. Quilty, Genesis D. Renderos, Xiaotun Liu i in. "Reversible epitaxial electrodeposition of metals in battery anodes". Science 366, nr 6465 (31.10.2019): 645–48. http://dx.doi.org/10.1126/science.aax6873.
Pełny tekst źródłaZhang, Yu, Mengdie Xu, Xin Jia, Fangjun Liu, Junlong Yao, Ruofei Hu, Xueliang Jiang, Peng Yu i Huan Yang. "Application of Biomass Materials in Zinc-Ion Batteries". Molecules 28, nr 6 (7.03.2023): 2436. http://dx.doi.org/10.3390/molecules28062436.
Pełny tekst źródłaOman, Henry. "Advances in Lithium and Nickel-Metal Hydride Battery Performance". MRS Bulletin 24, nr 11 (listopad 1999): 33–39. http://dx.doi.org/10.1557/s0883769400053434.
Pełny tekst źródłaGuo, Beibei, Qiangjian Ju, Ruguang Ma, Zichuang Li, Qian Liu, Fei Ai, Minghui Yang i in. "Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes". Journal of Materials Chemistry A 7, nr 33 (2019): 19355–63. http://dx.doi.org/10.1039/c9ta06411g.
Pełny tekst źródłaRuismäki, Ronja, Anna Dańczak, Lassi Klemettinen, Pekka Taskinen, Daniel Lindberg i Ari Jokilaakso. "Integrated Battery Scrap Recycling and Nickel Slag Cleaning with Methane Reduction". Minerals 10, nr 5 (13.05.2020): 435. http://dx.doi.org/10.3390/min10050435.
Pełny tekst źródłaWang, Zi Jian. "A Review of Inhibit the Growth of Lithium Dendrite Strategies". Defect and Diffusion Forum 421 (22.12.2022): 75–82. http://dx.doi.org/10.4028/p-4b15v7.
Pełny tekst źródłaLiu, Wenbao, Jianwu Hao, Chengjun Xu, Jian Mou, Liubing Dong, Fuyi Jiang, Zhuang Kang, Junlin Wu, Baozheng Jiang i Feiyu Kang. "Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems". Chemical Communications 53, nr 51 (2017): 6872–74. http://dx.doi.org/10.1039/c7cc01064h.
Pełny tekst źródłaZhang, Yongguang, Zhumabay Bakenov, Taizhe Tan i Jin Huang. "Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode". Polymers 10, nr 8 (2.08.2018): 853. http://dx.doi.org/10.3390/polym10080853.
Pełny tekst źródłaWang, Yuan, Zheng Chang, Junqiang Li, Ruizhe Li i Fuqiang Huang. "Zinc ferrum energy storage chemistries with high efficiency and long cycling life". Journal of Materials Chemistry A 6, nr 32 (2018): 15821–27. http://dx.doi.org/10.1039/c8ta05375h.
Pełny tekst źródłaZhi, Jian, Shengkai Li, Mei Han i P. Chen. "Biomolecule-guided cation regulation for dendrite-free metal anodes". Science Advances 6, nr 32 (sierpień 2020): eabb1342. http://dx.doi.org/10.1126/sciadv.abb1342.
Pełny tekst źródłaGao, Yue, Daiwei Wang, Yun Kyung Shin, Zhifei Yan, Zhuo Han, Ke Wang, Md Jamil Hossain i in. "Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel". Proceedings of the National Academy of Sciences 117, nr 48 (16.11.2020): 30135–41. http://dx.doi.org/10.1073/pnas.2001837117.
Pełny tekst źródłaAbedin, Muhammad Raisul, Shamsul Abedin, Md Hasib Al Mahbub, Nandini Deb i Mohidus Samad Khan. "A Hydrometallurgical Approach to Recover Zinc and Manganese from Spent Zn-C Batteries". Materials Science Forum 886 (marzec 2017): 117–21. http://dx.doi.org/10.4028/www.scientific.net/msf.886.117.
Pełny tekst źródłaJiang, Yao, Ming Peng, Jiao Lan, Yang Zhao, Ying-Rui Lu, Ting-Shan Chan, Ji Liu i Yongwen Tan. "A self-reconstructed (oxy)hydroxide@nanoporous metal phosphide electrode for high-performance rechargeable zinc batteries". Journal of Materials Chemistry A 7, nr 37 (2019): 21069–78. http://dx.doi.org/10.1039/c9ta07910f.
Pełny tekst źródłaDeng, Jie, Lei Wang, Fangming Jin i Yun Hang Hu. "Metal-free surface-microporous graphene electrocatalysts from CO2 for rechargeable all-solid-state zinc–air batteries". Journal of Materials Chemistry A 9, nr 16 (2021): 10081–87. http://dx.doi.org/10.1039/d1ta01001h.
Pełny tekst źródłaKadam, Nishad, i A. Sarkar. "A rechargeable zinc–air battery with decoupled metal oxidation and oxygen reduction reactions". Journal of Power Sources 510 (październik 2021): 230375. http://dx.doi.org/10.1016/j.jpowsour.2021.230375.
Pełny tekst źródłaZhang, Jia Liang, Jian Guo Yang, Peng Li i Hu Zhou. "An Automated Forming System of Negative Plates". Applied Mechanics and Materials 651-653 (wrzesień 2014): 1009–12. http://dx.doi.org/10.4028/www.scientific.net/amm.651-653.1009.
Pełny tekst źródłaZheng, Zhuoyuan, Haichuan Cao, Wenhui Shi, Chunling She, Xianlong Zhou, Lili Liu i Yusong Zhu. "Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes". Polymers 15, nr 1 (31.12.2022): 212. http://dx.doi.org/10.3390/polym15010212.
Pełny tekst źródłaYadav, Sudheer Kumar, Daniel Deckenbach i Jörg J. Schneider. "Secondary Zinc–Air Batteries: A View on Rechargeability Aspects". Batteries 8, nr 11 (17.11.2022): 244. http://dx.doi.org/10.3390/batteries8110244.
Pełny tekst źródłaMatthews, Kyle, Armin VahidMohammadi, Danzhen Zhang, Liyuan Liu, Patrice Simon i Yury Gogotsi. "Electrochemical Properties of MXene Electrodes in Aqueous Zinc Electrolytes". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 57. http://dx.doi.org/10.1149/ma2022-02157mtgabs.
Pełny tekst źródłaZhang, Yuxuan, Han Wook Song i Sunghwan Lee. "(Digital Presentation) Ultrathin Stabilized Zn Metal Anode for Highly Reversible Aqueous Zn-Ion Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 439. http://dx.doi.org/10.1149/ma2022-024439mtgabs.
Pełny tekst źródłaLi, Kaixin, Zhanhua Dong i Zhe Lü. "Rational A/B Site Ion Doping to Design Efficient and Stable Pr0.5Ba0.4Ca0.1Fe1-xCoxO3-δ Perovskites as Zinc–Air Batteries Cathode". Batteries 8, nr 12 (28.11.2022): 259. http://dx.doi.org/10.3390/batteries8120259.
Pełny tekst źródłaChen, Shi, Yifeng Huang, Haoran Li, Fuxin Wang, Wei Xu, Dezhou Zheng i Xihong Lu. "One-Pot Synthesis of NiSe2 with Layered Structure for Nickel-Zinc Battery". Molecules 28, nr 3 (21.01.2023): 1098. http://dx.doi.org/10.3390/molecules28031098.
Pełny tekst źródłaHuang, Zechuan, Haoyang Li, Zhen Yang, Haozhi Wang, Jingnan Ding, Luyao Xu, Yanling Tian, David Mitlin, Jia Ding i Wenbin Hu. "Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity". Energy Storage Materials 51 (październik 2022): 273–85. http://dx.doi.org/10.1016/j.ensm.2022.06.054.
Pełny tekst źródłaQu, Shengxiang, Bin Liu, Jingkun Wu, Zequan Zhao, Jie Liu, Jia Ding, Xiaopeng Han, Yida Deng, Cheng Zhong i Wenbin Hu. "Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes". ACS Applied Materials & Interfaces 12, nr 49 (25.11.2020): 54833–41. http://dx.doi.org/10.1021/acsami.0c17479.
Pełny tekst źródłaLiang, Shuqi, i Ce Liang. "High-Density Cobalt Nanoparticles Encapsulated with Nitrogen-Doped Carbon Nanoshells as a Bifunctional Catalyst for Rechargeable Zinc-Air Battery". Materials 12, nr 2 (12.01.2019): 243. http://dx.doi.org/10.3390/ma12020243.
Pełny tekst źródła