Artykuły w czasopismach na temat „Zinc finger motifs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Zinc finger motifs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, XiaoHong, YuJi Miao, XiaoDan Hu, Rui Min, PeiDang Liu, and HaiQian Zhang. "Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA." Bioinorganic Chemistry and Applications 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/1642064.
Pełny tekst źródłaGREEN, Andrew, and Bibudhendra SARKAR. "Alteration of zif268 zinc-finger motifs gives rise to non-native zinc-co-ordination sites but preserves wild-type DNA recognition." Biochemical Journal 333, no. 1 (1998): 85–90. http://dx.doi.org/10.1042/bj3330085.
Pełny tekst źródłaMAURER-STROH, SEBASTIAN, HE GAO, HAO HAN, et al. "MOTIF DISCOVERY WITH DATA MINING IN 3D PROTEIN STRUCTURE DATABASES: DISCOVERY, VALIDATION AND PREDICTION OF THE U-SHAPE ZINC BINDING ("HUF-ZINC") MOTIF." Journal of Bioinformatics and Computational Biology 11, no. 01 (2013): 1340008. http://dx.doi.org/10.1142/s0219720013400088.
Pełny tekst źródłaGebelein, Brian, and Raul Urrutia. "Sequence-Specific Transcriptional Repression by KS1, a Multiple-Zinc-Finger–Krüppel-Associated Box Protein." Molecular and Cellular Biology 21, no. 3 (2001): 928–39. http://dx.doi.org/10.1128/mcb.21.3.928-939.2001.
Pełny tekst źródłaHasegawa, Atsushi, Hiroshi Kaneko, Daishi Ishihara, et al. "GATA1 Changes DNA-Binding Fashion in a Binding-Site-Specific Manner and Alters Transcriptional Activity during Erythropoiesis." Blood 126, no. 23 (2015): 3584. http://dx.doi.org/10.1182/blood.v126.23.3584.3584.
Pełny tekst źródłaParraga, G., L. Young, and R. E. Klevit. "Zinc-finger motifs and DNA binding." Trends in Biochemical Sciences 14, no. 10 (1989): 398. http://dx.doi.org/10.1016/0968-0004(89)90283-1.
Pełny tekst źródłaGao, Xiang, Daniel J. Rowley, Xiaowu Gai, and Daniel F. Voytas. "Ty5 gag Mutations Increase Retrotransposition and Suggest a Role for Hydrogen Bonding in the Function of the Nucleocapsid Zinc Finger." Journal of Virology 76, no. 7 (2002): 3240–47. http://dx.doi.org/10.1128/jvi.76.7.3240-3247.2002.
Pełny tekst źródłaBowzard, J. Bradford, Robert P. Bennett, Neel K. Krishna, Sandra M. Ernst, Alan Rein, and John W. Wills. "Importance of Basic Residues in the Nucleocapsid Sequence for Retrovirus Gag Assembly and Complementation Rescue." Journal of Virology 72, no. 11 (1998): 9034–44. http://dx.doi.org/10.1128/jvi.72.11.9034-9044.1998.
Pełny tekst źródłaGuo, Jianhui, Tiyun Wu, Bradley F. Kane, et al. "Subtle Alterations of the Native Zinc Finger Structures Have Dramatic Effects on the Nucleic Acid Chaperone Activity of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein." Journal of Virology 76, no. 9 (2002): 4370–78. http://dx.doi.org/10.1128/jvi.76.9.4370-4378.2002.
Pełny tekst źródłaGuo, Xuemin, John-William N. Carroll, Margaret R. MacDonald, Stephen P. Goff, and Guangxia Gao. "The Zinc Finger Antiviral Protein Directly Binds to Specific Viral mRNAs through the CCCH Zinc Finger Motifs." Journal of Virology 78, no. 23 (2004): 12781–87. http://dx.doi.org/10.1128/jvi.78.23.12781-12787.2004.
Pełny tekst źródłaTsai, Robert Y. L., and Randall R. Reed. "Identification of DNA Recognition Sequences and Protein Interaction Domains of the Multiple-Zn-Finger Protein Roaz." Molecular and Cellular Biology 18, no. 11 (1998): 6447–56. http://dx.doi.org/10.1128/mcb.18.11.6447.
Pełny tekst źródłaZhang, Jun-Wu, Han Peng, and Zhan-Wen Du. "Identification, Characterization of a Novel Zinc Finger Protein (HZF1) Gene and Its Roles in Erythroid Differentiation and Megakaryocyte Differentiation." Blood 106, no. 11 (2005): 4237. http://dx.doi.org/10.1182/blood.v106.11.4237.4237.
Pełny tekst źródłaSu, Dan, Zhiyong Lou, Fei Sun, et al. "Dodecamer Structure of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein nsp10." Journal of Virology 80, no. 16 (2006): 7902–8. http://dx.doi.org/10.1128/jvi.00483-06.
Pełny tekst źródłaRollins, M. B., S. Del Rio, A. L. Galey, D. R. Setzer, and M. T. Andrews. "Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos." Molecular and Cellular Biology 13, no. 8 (1993): 4776–83. http://dx.doi.org/10.1128/mcb.13.8.4776-4783.1993.
Pełny tekst źródłaRollins, M. B., S. Del Rio, A. L. Galey, D. R. Setzer, and M. T. Andrews. "Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos." Molecular and Cellular Biology 13, no. 8 (1993): 4776–83. http://dx.doi.org/10.1128/mcb.13.8.4776.
Pełny tekst źródłaChen, Yan, Stacy D. Carrington-Lawrence, Ping Bai, and Sandra K. Weller. "Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex." Journal of Virology 79, no. 14 (2005): 9088–96. http://dx.doi.org/10.1128/jvi.79.14.9088-9096.2005.
Pełny tekst źródłaShastry, B. S. "Transcription factor IIIA (TFIIIA) in the second decade." Journal of Cell Science 109, no. 3 (1996): 535–39. http://dx.doi.org/10.1242/jcs.109.3.535.
Pełny tekst źródłaNakamura, Takuro, Yukari Yamazaki, Yuriko Saiki, et al. "Evi9 Encodes a Novel Zinc Finger Protein That Physically Interacts with BCL6, a Known Human B-Cell Proto-Oncogene Product." Molecular and Cellular Biology 20, no. 9 (2000): 3178–86. http://dx.doi.org/10.1128/mcb.20.9.3178-3186.2000.
Pełny tekst źródłaFranklin, A. J., T. L. Jetton, K. D. Shelton, and M. A. Magnuson. "BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription." Molecular and Cellular Biology 14, no. 10 (1994): 6773–88. http://dx.doi.org/10.1128/mcb.14.10.6773-6788.1994.
Pełny tekst źródłaFranklin, A. J., T. L. Jetton, K. D. Shelton, and M. A. Magnuson. "BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription." Molecular and Cellular Biology 14, no. 10 (1994): 6773–88. http://dx.doi.org/10.1128/mcb.14.10.6773.
Pełny tekst źródłaKanakoglou, Dimitrios S., Andromachi Pampalou, Lina S. Malakou, et al. "Central Role of C2H2-Type Zinc Finger-Containing Genes in Pediatric Brain Tumors." DNA 2, no. 1 (2022): 1–21. http://dx.doi.org/10.3390/dna2010001.
Pełny tekst źródłaBragg, Jennifer N., Diane M. Lawrence та Andrew O. Jackson. "The N-Terminal 85 Amino Acids of the Barley Stripe Mosaic Virus γb Pathogenesis Protein Contain Three Zinc-Binding Motifs". Journal of Virology 78, № 14 (2004): 7379–91. http://dx.doi.org/10.1128/jvi.78.14.7379-7391.2004.
Pełny tekst źródłaPopov, Sergei, Elena Popova, Michio Inoue, and Heinrich G. Göttlinger. "Human Immunodeficiency Virus Type 1 Gag Engages the Bro1 Domain of ALIX/AIP1 through the Nucleocapsid." Journal of Virology 82, no. 3 (2007): 1389–98. http://dx.doi.org/10.1128/jvi.01912-07.
Pełny tekst źródłaSmith, Alexander E. F., Farzin Farzaneh, and Kevin G. Ford. "Single zinc-finger extension: enhancing transcriptional activity and specificity of three-zinc-finger proteins." Biological Chemistry 386, no. 2 (2005): 95–99. http://dx.doi.org/10.1515/bc.2005.012.
Pełny tekst źródłaHuang, Shih-Ming, Sheng-Ping Huang, Sung-Ling Wang та Pei-Yao Liu. "Importin α1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1". Biochemical Journal 402, № 2 (2007): 359–66. http://dx.doi.org/10.1042/bj20061295.
Pełny tekst źródłaMORISAKI, Tatsuya, Miki IMANISHI, Shiroh FUTAKI, and Yukio SUGIURA. "Artificial Transcription Factors Based on Multi-zinc Finger Motifs." YAKUGAKU ZASSHI 130, no. 1 (2010): 45–48. http://dx.doi.org/10.1248/yakushi.130.45.
Pełny tekst źródłaGuo, Jianhui, Tiyun Wu, Jada Anderson, et al. "Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer." Journal of Virology 74, no. 19 (2000): 8980–88. http://dx.doi.org/10.1128/jvi.74.19.8980-8988.2000.
Pełny tekst źródłaLongworth, Michelle S., and Laimonis A. Laimins. "The Binding of Histone Deacetylases and the Integrity of Zinc Finger-Like Motifs of the E7 Protein Are Essential for the Life Cycle of Human Papillomavirus Type 31." Journal of Virology 78, no. 7 (2004): 3533–41. http://dx.doi.org/10.1128/jvi.78.7.3533-3541.2004.
Pełny tekst źródłaPerkins, A. S., R. Fishel, N. A. Jenkins, and N. G. Copeland. "Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein." Molecular and Cellular Biology 11, no. 5 (1991): 2665–74. http://dx.doi.org/10.1128/mcb.11.5.2665-2674.1991.
Pełny tekst źródłaPerkins, A. S., R. Fishel, N. A. Jenkins, and N. G. Copeland. "Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein." Molecular and Cellular Biology 11, no. 5 (1991): 2665–74. http://dx.doi.org/10.1128/mcb.11.5.2665.
Pełny tekst źródłaArranz, V., F. Harper, Y. Florentin, E. Puvion, M. Kress, and M. Ernoult-Lange. "Human and mouse MOK2 proteins are associated with nuclear ribonucleoprotein components and bind specifically to RNA and DNA through their zinc finger domains." Molecular and Cellular Biology 17, no. 4 (1997): 2116–26. http://dx.doi.org/10.1128/mcb.17.4.2116.
Pełny tekst źródłaNakaseko, Yukinobu, David Neuhaus, Aaron Klug, and Daniela Rhodes. "Adjacent zinc-finger motifs in multiple zinc-finger peptides from SWI5 form structurally independent, flexibly linked domains." Journal of Molecular Biology 228, no. 2 (1992): 619–36. http://dx.doi.org/10.1016/0022-2836(92)90845-b.
Pełny tekst źródłaQuinlan, Kate G. R., Marco Nardini, Alexis Verger, et al. "Specific Recognition of ZNF217 and Other Zinc Finger Proteins at a Surface Groove of C-Terminal Binding Proteins." Molecular and Cellular Biology 26, no. 21 (2006): 8159–72. http://dx.doi.org/10.1128/mcb.00680-06.
Pełny tekst źródłaYang, Chang, Rui Hao, Yong Fei Lan, et al. "Integrity of zinc finger motifs in PML protein is necessary for inducing its degradation by antimony." Metallomics 11, no. 8 (2019): 1419–29. http://dx.doi.org/10.1039/c9mt00102f.
Pełny tekst źródłaHeras, Sara R., M. Carmen Thomas, Francisco Macias, Manuel E. Patarroyo, Carlos Alonso, and Manuel C. López. "Nucleic-acid-binding properties of the C2-L1Tc nucleic acid chaperone encoded by L1Tc retrotransposon." Biochemical Journal 424, no. 3 (2009): 479–90. http://dx.doi.org/10.1042/bj20090766.
Pełny tekst źródłaOkabe, Shinichiro, Tetsuya Fukuda, Kazuki Ishibashi, et al. "BAZF, a Novel Bcl6 Homolog, Functions as a Transcriptional Repressor." Molecular and Cellular Biology 18, no. 7 (1998): 4235–44. http://dx.doi.org/10.1128/mcb.18.7.4235.
Pełny tekst źródłaMacPherson, Sarah, Marc Larochelle, and Bernard Turcotte. "A Fungal Family of Transcriptional Regulators: the Zinc Cluster Proteins." Microbiology and Molecular Biology Reviews 70, no. 3 (2006): 583–604. http://dx.doi.org/10.1128/mmbr.00015-06.
Pełny tekst źródłaKim, Min-Kyu, Lei Zhao, Soyoung Jeong, et al. "Structural and Biochemical Characterization of Thioredoxin-2 from Deinococcus radiodurans." Antioxidants 10, no. 11 (2021): 1843. http://dx.doi.org/10.3390/antiox10111843.
Pełny tekst źródłaLee, Sang-Jin, Jae-Rin Lee, Hwa-Sun Hah, et al. "PIAS1 interacts with the KRAB zinc finger protein, ZNF133, via zinc finger motifs and regulates its transcriptional activity." Experimental & Molecular Medicine 39, no. 4 (2007): 450–57. http://dx.doi.org/10.1038/emm.2007.49.
Pełny tekst źródłaChen, Canbin, Fangfang Xie, Kamran Shah, et al. "Genome-Wide Identification of WRKY Gene Family in Pitaya Reveals the Involvement of HmoWRKY42 in Betalain Biosynthesis." International Journal of Molecular Sciences 23, no. 18 (2022): 10568. http://dx.doi.org/10.3390/ijms231810568.
Pełny tekst źródłaHudson, Nicholas O., and Bethany A. Buck-Koehntop. "Zinc Finger Readers of Methylated DNA." Molecules 23, no. 10 (2018): 2555. http://dx.doi.org/10.3390/molecules23102555.
Pełny tekst źródłaKato, N., K. Shimotohno, D. VanLeeuwen, and M. Cohen. "Human proviral mRNAs down regulated in choriocarcinoma encode a zinc finger protein related to Krüppel." Molecular and Cellular Biology 10, no. 8 (1990): 4401–5. http://dx.doi.org/10.1128/mcb.10.8.4401-4405.1990.
Pełny tekst źródłaKato, N., K. Shimotohno, D. VanLeeuwen, and M. Cohen. "Human proviral mRNAs down regulated in choriocarcinoma encode a zinc finger protein related to Krüppel." Molecular and Cellular Biology 10, no. 8 (1990): 4401–5. http://dx.doi.org/10.1128/mcb.10.8.4401.
Pełny tekst źródłaWang, S. S., D. R. Stanford, C. D. Silvers, and A. K. Hopper. "STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs." Molecular and Cellular Biology 12, no. 6 (1992): 2633–43. http://dx.doi.org/10.1128/mcb.12.6.2633-2643.1992.
Pełny tekst źródłaWang, S. S., D. R. Stanford, C. D. Silvers, and A. K. Hopper. "STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs." Molecular and Cellular Biology 12, no. 6 (1992): 2633–43. http://dx.doi.org/10.1128/mcb.12.6.2633.
Pełny tekst źródłaHasegawa, Atsushi, Hiroshi Kaneko, Daishi Ishihara, et al. "GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation." Molecular and Cellular Biology 36, no. 16 (2016): 2151–67. http://dx.doi.org/10.1128/mcb.00017-16.
Pełny tekst źródłaDiaz, Brenda, Christopher Mederos, Kemin Tan, and Yuk-Ching Tse-Dinh. "Microbial Type IA Topoisomerase C-Terminal Domain Sequence Motifs, Distribution and Combination." International Journal of Molecular Sciences 23, no. 15 (2022): 8709. http://dx.doi.org/10.3390/ijms23158709.
Pełny tekst źródłaTrainor, C. D., J. G. Omichinski, T. L. Vandergon, A. M. Gronenborn, G. M. Clore, and G. Felsenfeld. "A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction." Molecular and Cellular Biology 16, no. 5 (1996): 2238–47. http://dx.doi.org/10.1128/mcb.16.5.2238.
Pełny tekst źródłaRodriguez, Alyssa A., Jessica L. Wojtaszek, Briana H. Greer, et al. "An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3." Journal of Biological Chemistry 295, no. 46 (2020): 15566–75. http://dx.doi.org/10.1074/jbc.ra120.015541.
Pełny tekst źródłaBellini, M., J. C. Lacroix, and J. G. Gall. "A zinc-binding domain is required for targeting the maternal nuclear protein PwA33 to lampbrush chromosome loops." Journal of Cell Biology 131, no. 3 (1995): 563–70. http://dx.doi.org/10.1083/jcb.131.3.563.
Pełny tekst źródła