Gotowa bibliografia na temat „Yeast Production”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Yeast Production”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Yeast Production"
Karthika, S., i M. Kannahi. "Biodiesel Production from Oleaginous Yeast". International Journal of Trend in Scientific Research and Development Volume-1, Issue-6 (31.10.2017): 1096–106. http://dx.doi.org/10.31142/ijtsrd4691.
Pełny tekst źródłaBorislav, Miličević, Babić Jurislav, Ačkar Đurđica, Miličević Radoslav, Jozinović Antun, Jukić Huska, Babić Vlado i Šubarić Drago. "Sparkling wine production by immobilised yeast fermentation". Czech Journal of Food Sciences 35, No. 2 (29.04.2017): 171–79. http://dx.doi.org/10.17221/194/2016-cjfs.
Pełny tekst źródłaGeronikou, Athina, Nadja Larsen, Søren K. Lillevang i Lene Jespersen. "Occurrence and Identification of Yeasts in Production of White-Brined Cheese". Microorganisms 10, nr 6 (24.05.2022): 1079. http://dx.doi.org/10.3390/microorganisms10061079.
Pełny tekst źródłaTekarslan-Sahin, Seyma Hande. "Adaptive Laboratory Evolution of Yeasts for Aroma Compound Production". Fermentation 8, nr 8 (6.08.2022): 372. http://dx.doi.org/10.3390/fermentation8080372.
Pełny tekst źródłaDippel, Kevin, Katrin Matti, Judith Muno-Bender, Florian Michling, Silvia Brezina, Heike Semmler, Doris Rauhut i Jürgen Wendland. "Co-Fermentations of Kveik with Non-Conventional Yeasts for Targeted Aroma Modulation". Microorganisms 10, nr 10 (27.09.2022): 1922. http://dx.doi.org/10.3390/microorganisms10101922.
Pełny tekst źródłaVaštík, Peter, Daniela Šmogrovičová, Valentína Kafková, Pavol Sulo, Katarína Furdíková i Ivan Špánik. "Production and characterisation of non-alcoholic beer using special yeast". KVASNY PRUMYSL 66, nr 5 (15.10.2020): 336–44. http://dx.doi.org/10.18832/kp2019.66.336.
Pełny tekst źródłaYu, San San, Thet Su Hlaing, Swe Zin Yu i Nwe Ni Win Htet. "Isolation and characterization of xylose-utilizing yeasts for ethanol production". Journal of Bacteriology & Mycology: Open Access 6, nr 2 (2018): 109–14. http://dx.doi.org/10.15406/jbmoa.2018.06.00186.
Pełny tekst źródłaKongruang, Sasithorn, Sittiruk Roytrakul i Malinee Sriariyanun. "Renewable Biodiesel Production from Oleaginous Yeast Biomass Using Industrial Wastes". E3S Web of Conferences 141 (2020): 03010. http://dx.doi.org/10.1051/e3sconf/202014103010.
Pełny tekst źródłaWong, S., S. K. Wong i J. S. Bujang. "Ethanol Production in Yeasts Isolated from Fermented Kitchen Waste". ASEAN Journal on Science and Technology for Development 29, nr 2 (20.12.2012): 90. http://dx.doi.org/10.29037/ajstd.56.
Pełny tekst źródłaBlack, Kirsty, i Graeme Walker. "Yeast Fermentation for Production of Neutral Distilled Spirits". Applied Sciences 13, nr 8 (14.04.2023): 4927. http://dx.doi.org/10.3390/app13084927.
Pełny tekst źródłaRozprawy doktorskie na temat "Yeast Production"
Anselme, Marc Joseph. "Immobilized yeast reactor for ethanol production". Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/11706.
Pełny tekst źródłaNamthabad, Sainath, i Ramesh Chinta. "Robust Encapsulation of Yeast for Bioethanol Production". Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17499.
Pełny tekst źródłaProgram: Industrial Biotechnology
Armstrong, Gareth Owen. "The production of resveratrol by wine yeast". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52557.
Pełny tekst źródłaENGLISH ABSTRACT: Grapevine is constantly under attack from a wide variety of pathogens including viruses, bacteria and fungi. In order to ensure survival, the grapevine has developed a vast array of defense mechanisms to combat invading organisms. A key element of this disease resistance is the production of phytoalexins, of which resveratrol is the primary component. The synthesis of resveratrol, together with other structural and biochemical defense mechanisms equips the plant to combat a number of pathogens resulting in the production of healthy grapes for the vinification of top quality wine. As part of the active disease response resveratrol is synthesised de novo in the berry skin at the site of infection, on recognition of the pathogen. Here it is able to limit the damage caused by the pathogen as well as preventing it from spreading. This gives the plant the opportunity to initiate its systemic acquired resistance thereby protecting the rest of the plant and preventing secondary infections. The fermentation of red wine on the grape skins allows for the extraction of resveratrol from the skin into the wine. Red wines therefore have a significantly higher concentration of resveratrol than white varieties, which contain little or no resveratrol at all. It is for this reason that the moderate consumption of wine, in particular red wine, is synonymous with a healthy lifestyle. The antioxidant and anti-inflammatory activities of resveratrol are important contributors to the cardiovascular benefits derived from the consumption of red wine. It now seems, however, that significant cardiovascular protection is derived from the synergistic action of resveratrol, the polyphenols and the alcohol in wine. With the wholesomeness of any food or beverage being of extreme importance, the aim of this project was to manipulate wine yeast to produce resveratrol during fermentation. This required the introduction of an entire metabolic pathway, by integrating plant genes into the yeast. Resveratrol synthase utilises three malonyl-CoA and one pcoumaroyl- CoA molecules to produce one molecule of resveratrol, Saccharomyces cerevisiae produces malonyl-CoA but no p-coumaroyl-CoA. Therefore, the following genes were obtained to enable yeast to produce p-coumaroyl-CoA: PAL, encoding phenylalanine ammonia-lyase to convert phenylalanine into cinnamic acid; C4H, encoding cinnamate-4- hydroxlyase to convert cinnamic acid into p-coumaric acid; and 4CL9 or 4CL216 encoding CoA-ligases to convert the p-coumaric acid into p-coumaroyl-CoA. To attain high-level expression, the genes were subcloned under the control of the phosphoglycerate kinase gene (PGK1) promoter and terminator. Due to integration problems with these expression cassettes and the fact that the yeast was able to consume p-coumaric acid, the 4CL9, 4CL216 and Vst1 (encoding resveratrol synthase) genes were subcloned under the control of the alcohol dehydrogenase (ADH2) and PGK1 promoters into episomal plasmids, respectively. A laboratory yeast strain containing both the Vst1 and 4CL9, or the Vst1 and 4CL216 genes was evaluated for its ability to utilise p-coumaric acid and produce resveratrol. Northem analysis confirmed that the Vst1, 4CL9 and 4CL216 genes were transcribed and over-expressed compared to the control strain. The transformants expressing the CoA-ligase genes utilised the p-coumaric acid faster than the control, although it was not possible to determine whether p-coumaroyl-CoA was produced. No resveratrol was produced under the assay conditions used. The results indicated that the yeast is unable to produce active resveratrol synthase, which is required to catalyse the final reaction in the production of resveratrol. Posttranslational modification, such as overglycosylation and disulphide formation, of the heterologous protein in yeast has been indicated as the possible reason for the lack of enzyme activity. This introduces an exciting area of research for the development of biotechnological tools with the ability to increase the production of active heterologous proteins in yeast.
AFRIKAANSE OPSOMMING: Wingerde word voortdurend deur 'n groot verskeidenheid patogene, insluitende virusse, bakteriee en swamme, aangeval. Ten einde oorlewing te verseker, het die wingerdstok In wye reeks verdedigingsmeganismes ontwikkel om weerstand te bied teen indringerorganismes. 'n Belangrike faktor in hierdie weerstand teen siektes is die produksie van fitoaleksiene, waarvan resveratrol die hoofkomponent is. Oeur die sintese van resveratrol, asook ander strukturele en biochemiese verdedigingsmeganismes, word die plant toegerus om weerstand te kan bied teen In hele aantal patogene ten einde gesonde druiwe te produseer wat gebruik kan word vir die vinifikasie van topgehalte wyn. As deel van die aktiewe reaksie teen siektes, word resveratrol de novo in die dop van die korrel by die plek van infeksie gesintetiseer sodra 'n patogeen herken word. Hier kan dit die skade deur die patogeen veroorsaak, beperk en verhoed dat dit versprei. Oit gee aan die plant die geleentheid om sy sistemies-verworwe weerstand te inisieer, en daardeur die res van die plant te beskerm, sowel as sekondere infeksies te verhoed. Die fermentasie van rooiwyn op die druifdoppe maak voorsiening vir die ekstraksie van resveratrol uit die dop na die wyn. Die konsentrasie van resveratrol in rooiwyn is dus beduidend hoer as in die wit varietelte, wat geen of baie min resveratrol bevat. Oit is dan juis die rede waarom die matige inname van wyn, veral rooi wyn, gesien word as In integrale deel van 'n gesonde leefwyse. Resveratrol se aktiwiteit as antioksidant en antiinflammatoriese middel lewer In belangrike bydrae tot die kardiovaskulere voordele wat verkry word uit die inname van rooiwyn. Oit blyk egter nou dat die beduidende kardiovaskulere beskerming gesetel is in die sinergistiese werking van resve ratro I, die polifenole en die alkohol in wyn. Aangesien die heilsaamheid van enige voedsel of drank van die uiterste belang is, was dit die doel van hierdie projek om wyngis te manipuleer ten einde tydens die fermentasieproses resveratrol te produseer. Hiervoor moes 'n volledige metaboliese pad daargestel word deur plantgene in die gis te inkorporeer. Resveratrol-sintase maak gebruik van drie maloniel-KoA-molekules en een p-kumarotel-Kos-molekule om een molekule resveratrol te produseer. Saccharomyces cerevisiae produseer maloniel-KoA, maar nie p-kumaroiel-Kcs, nie. Oie volgende gene is dus aangewend om die gis in staat te stel om p-kumarolel-Koe, te produseer: PAL, wat fenielalanien-ammoniak-liase enkodeer om fenielalanien om te sit na kaneelsuur; C4H, wat sinnamaat-4-hidroksliase enkodeer om kaneelsuur om te sit na p-kumaarsuur; en 4CL9 of 4CL216 wat KoA-ligases enkodeer om p-kumaarsuur om te sit na p-kumarolel-Kos, Om hoevlak-uitdrukking te verkry, is die gene gesubkloneer onder beheer van die fosfogliseraat-kinase-geen(PGK1)- promotor en -terminator. As gevolg van integrasieprobleme met hierdie uitdrukkingskassette en die feit dat die gis die p-kumaarsuur kon verteer, is die 4CL9-, 4CL216- en Vst1- (wat resveratrol-sintase enkodeer) gene na episomale plasmiede gesubkloneer onder beheer van die alkohol-dehidrogenase(ADH2)- en PGK1-promotors onderskeidelik. 'n Laboratorium-gisstam wat 6f beide die Vst1-geen en die 4CL9-geen, 6f die Vst1-geen en die 4CL216-geen bevat het, is geevalueer vir die verrnoe om pkumaarsuur te benut en resveratrol te produseer. Noordelike klad analises het bevestig dat die Vst1-, 4CL9- en 4CL216-gene getranskribeer en ooruitgedruk was in vergelyking met die kontrole-stam. Die transformante wat die KoA-ligases uitgedruk het, het die pkumaarsuur vinniger benut as wat die kontrole dit gedoen het, alhoewel dit nie moontlik was om vas te stel of o-kurnarotel-Kos, geproduseer is nie. Met die essai-kondisies wat gebruik is, is geen resveratroI geproduseer nie. Die resultate het daarop gedui dat die gis nie daartoe in staat is om aktiewe resveratrol-sintase, wat nodig is vir die katalise van die finale reaksie in die produksie van resveratrol, te produseer nie. Naomsettingsmodifikasies van die heteroloe protelen in die gis, soos oor-glikosilasie en disulfiedvorming, is aangewys as die moontlike rede vir die gebrek aan ensiemaktiwiteit. Dit stel In opwindende veld vir verdere navorsing voor, naamlik die ontwikkeling van biotegnologiese middele met die vermoe om die produksie van aktiewe heteroloe protelene in gis te verhoog.
Thipayarat, Aluck. "Production of human serum albumin by immobilized yeast". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.
Pełny tekst źródłaGrant, Stephanie Mary. "Production of astaxanthin by the yeast Phaffia rhodozyma". Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324833.
Pełny tekst źródłaFairbairn, Samantha. "Stress, fermentation performance and aroma production by yeast". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20336.
Pełny tekst źródłaENGLISH ABSTRACT: Yeast strains contend with numerous stresses during winemaking. An inability to perceive and initiate the physiological changes needed to adapt to stress, has been linked to slow or incomplete (residual sugar > 4 g/L) fermentations. Wine yeast strains differ in genotype; this is manifested as differences in their stress tolerance, and fermentation performance. The first goal of this study was to evaluate how the initial sugar (200 or 240 g/L) and nitrogen (50, 100, 250, or 400 mg/L) content, and the fermentation temperature (15°C or 20°C) affected the fermentation performance of 17 commercial wine yeast strains. Fermentation performance was evaluated based on the fermentation kinetics (lag phase, maximum fermentation rate and total weight loss by CO2 evolution), residual sugar content and yeast dry weight. The results demonstrate that the fermentation performances of commercial yeast cultures are significantly and differently affected by initial nitrogen and sugar levels, as well as the fermentation temperature. Additionally, excess nitrogen had a negative impact on the fermentation kinetics and sugar consumption. Nitrogen deficiency is a common cause of slow and incomplete fermentations, as it affects yeast growth and thus fermentation rates. Nitrogen supplements are routinely added at the onset of fermentation, reducing the risk of problematic fermentations. Therefore characterising the fermentative ability of a strain over a range of oenologically relevant conditions, could aid winemakers in selecting a yeast strain capable of fermenting a grape must (of known sugar and nitrogen levels) to completion at the desired fermentation temperature. Investigations on fermentation related stress generally focus on its influence on fermentation rate and sugar consumption. However, from a winemaking perspective, the strain’s ability to produce the desired volatile aroma compounds is equally important. Yet, literature provides little insight into the influence stress has on the volatile aroma profile; this is surprising as wine aroma is closely linked to wine quality and consumer liking. The final goal of this study was to evaluate changes to the volatile aroma profiles produced by five commercial yeast strains, in response to hyperosmotic and temperature stress. The concentrations of the aroma compounds were quantified using a gas chromatograph coupled to a flame ionization detector. The results show that hyperosmotic and temperature stress caused significant changes in the levels of a number of aroma compounds. Furthermore, the changes observed differed among the evaluated strains, as well as for the fermentation stress treatments studied. Future aims should be directed towards the potential application of yeast strain selection as a means to avoid problematic fermentations in grape must; in addition to the further characterisation of the relationship between stress and the resultant volatile aroma profile in wine.
AFRIKAANSE OPSOMMING: Gisrasse moet verskeie stresfaktore afweer tydens die wynmaak proses. Die onvermoë van ‘n wyngis om stres waar te neem en die nodige fisiologiese veranderinge te inisieer om aan te pas by die strestoestande word met slepende of onvolledige fermentasies (met ‘n residuele suiker van meer as 4 g/L) geassosieer. Wyngisrasse verkil in genotipe; wat as groot verskille in die graad van strestoleransie, en dus ook fermentasie sukses geopenbaar word. Die eerste doelwit van hierdie studie was om te evalueer hoe die suiker (200 of 240 g/L) en stikstof (50, 100, 250, of 400 mg/L), asook die fermentasie temperatuur (15°C of 20°C) die fermentasie prestasie van 17 kommersiële wyngiskulture beïnvloed. Die sukses van fermentasie is geëvalueer op grond van fermentasie kinetika (sloerfase, maksimum fermentasiespoed en totale gewigsverlies as CO2 verlies), die residuele suiker inhoud en die gis droë massa. Die resultate demonstreer dat die fermentasie sukses van kommersiële giskulture beduidend en verskillend beïnvloed word deur die aanvangsstikstof en – suikerkonsentrasies, asook die fermentasie temperatuur. Daarbenewens, wanneer stikstof in oormaat teenwoordig is kan dit ‘n negatiewe impak op fermentasietempo en suiker metabolisme hê. Beperkende vlakke van stikstof ‘n algemene oorsaak van slepende of onvolledige fermentasies, aangesien stikstof die groei en gevolglik ook die fermentasiespoed van gis beïnvloed. Stikstofaanvullings word dikwels tot druiwemos toegevoeg aan die begin van gisting, wat die risiko van probleemfermentasies verlaag. Dus kan die karakterisering van die fermentasievermoë van ‘n gisras vir ‘n reeks wynkundig relevante kondisies die wynmaker help om ‘n gisras te selekteer wat in staat is om ‘n druiwemos (waarvan die suiker en stikstofvlakke bekend is) droog te gis by die gewenste temperatuur. Meeste studies wat fermentasieverwante stress ondersoek, fokus op die die invloed daarvan op fermentasietempo en suikerverbruik. Van ‘n wynmaakperspektief is die gis se vermoë om die gewensde vlugtige aroma komponente te produseer egter ewe belangrik as die vermoë om fermentasie te voltooi. Tog verskaf die literatuur min insig tot die invloed van stres op die vlugtige aromaprofiel; wat verbasend is aangesien die aromaprofiel ‘n belangrike faktor is van die waargenome wynkwaliteit en daarom ook verbruikersvoorkeur. Die finale doelwit van hierdie projek was om die veranderinge tot die vlugtige aromaprofiel geproduseer deur vyf kommersiële gisrasse in reaksie op hiperosmotiese stres en temperatuur stres te evalueer. Die konsentrasies van die aromakomponente is gekwantifiseer deur gas chromatografie gekoppel aan vlam‐ioniserende deteksie. Die resultate wys dat hiperosmotiese‐ en temperatuur stres beduidende veranderinge meebring in die vlakke van ‘n aantal aromakomponente. Verder is die waargenome veranderinge ook verskillend vir die geëvalueerde gisrasse, asook vir die verskille stresbehandelings wat ondersoek is. Toekomstige studies behoort gerig te wees op die toepassing van gis seleksie om potensiële probleemfermentasies in druiwemos te voorkom; asook die verdere karakterisering van die verhouding tussen omgewingstresfaktore en die gevolglike vlugtige aromaprofiel in wyn.
Hemmati, Naghmeh. "Engineering yeast strains to enhance bioethanol production efficiency /". Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674956301&sid=4&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaTai-Wong, Sue Mei. "Origin and genetic manipulation of brewing lager yeast". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249282.
Pełny tekst źródłaMcCormack, P. J. "The ecological significance of antibiotic production to yeasts and yeast-like organisms on the phylloplane". Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304835.
Pełny tekst źródłaAltabet, Altaher Ibrahim. "Siderophore and pigment production by Candida albicans". Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360169.
Pełny tekst źródłaKsiążki na temat "Yeast Production"
Bill, Roslyn M., red. Recombinant Protein Production in Yeast. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-770-5.
Pełny tekst źródłaGasser, Brigitte, i Diethard Mattanovich, red. Recombinant Protein Production in Yeast. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9024-5.
Pełny tekst źródłaOjamo, Heikki. Yeast xylose metabolism and xylitol production. Espoo, Finland: Technical Research Centre of Finland, 1994.
Znajdź pełny tekst źródłaRadomír, Lásztity, red. Use of yeast biomass in food production. Boca Raton: CRC Press, 1991.
Znajdź pełny tekst źródłaB, Kristiansen, i European Federation of Biotechnology. Working Party on Bioreactor Performance., red. Integrated design of a fermentation plant: The production of baker's yeast. Weinheim: VCH, 1994.
Znajdź pełny tekst źródłaAlexander, M. A. Continuous ethanol production from d-Xylose by Candida shehatae. [Madison, Wis.?: Forest Products Laboratory, 1987.
Znajdź pełny tekst źródłaAyub, M. A. Z. Effects of recombination and environmental conditions on superoxide dismutase production by yeast. Manchester: UMIST, 1991.
Znajdź pełny tekst źródłaNegrete, S. Genetic and physiological studies of the production of higher alcohols by yeast. Manchester: UMIST, 1992.
Znajdź pełny tekst źródłaGough, Suzanne. Production of Ethanol from mollasses using the Thermotolerant Yeast Strain Kluyveromyces marxiamus IMB3. [S.l: The Author], 1998.
Znajdź pełny tekst źródłaGroleau, Denis. Production d'éthanol et de polyols par fermentation avec une levure osmophhile. Ottawa: La Ministère, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Yeast Production"
Reed, Gerald, i Tilak W. Nagodawithana. "Baker’s Yeast Production". W Yeast Technology, 261–314. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-9771-7_7.
Pełny tekst źródłaBerry, D. R., i D. C. Watson. "Production of organoleptic compounds". W Yeast Biotechnology, 345–68. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3119-0_11.
Pełny tekst źródłaRosen, Knut. "Production of baker’s yeast". W Yeast Biotechnology, 471–500. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3119-0_15.
Pełny tekst źródłaChiba, Yasunori. "Heterologous Glycoprotein Production (Yeast Yeast )". W Glycoscience: Biology and Medicine, 1537–43. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54841-6_204.
Pełny tekst źródłaBellgart, Karl Heinz. "Baker’s Yeast Production". W Bioreaction Engineering, 277–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59735-0_10.
Pełny tekst źródłaOgino, Chiaki, i Jerome Amoah. "Energy Production: Biodiesel". W Yeast Cell Surface Engineering, 43–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_4.
Pełny tekst źródłaChiba, Yasunori. "Heterologous Glycoprotein Production (Yeast)". W Glycoscience: Biology and Medicine, 1–7. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54836-2_204-1.
Pełny tekst źródłaStewart, Graham G. "Flavour Production by Yeast". W Brewing and Distilling Yeasts, 325–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69126-8_15.
Pełny tekst źródłaBachhawat, Anand K., Dwaipayan Ganguli, Jaspreet Kaur, Neha Kasturia, Anil Thakur, Hardeep Kaur, Akhilesh Kumar i Amit Yadav. "Glutathione Production in Yeast". W Yeast Biotechnology: Diversity and Applications, 259–80. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8292-4_13.
Pełny tekst źródłaTakagi, Toshiyuki. "Energy Production: Biomass – Marine". W Yeast Cell Surface Engineering, 29–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Yeast Production"
Bandhu, Sheetal, i Debashish Ghosh. "Genetic modification to enhance single cell oil production in the oleagineous yeast Rhodotorula mucilaginosa". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/bdpk2930.
Pełny tekst źródłaBardhan, Pritam, i Manabendra Mandal. "Rhodotorula mucilaginosa R2: A potent oleaginous yeast isolated from traditional fermented food, as a promising platform for the production of lipid-based biofuels, bioactive compounds and other value added products". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qbyp3823.
Pełny tekst źródłaRyabtseva, Svetlana, S. N. Sazanova, Maria A. Shpak, Yu A. Tabakova i A. A. Semchenko. "FEATURES OF YEAST CULTIVATION IN CHEESE WHEY FOR BETAGALACTOSIDASES PRODUCTION". W I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-120.
Pełny tekst źródła"Screening of Basidiomycete Yeast with Oil Production". W International Conference on Agricultural, Ecological and Medical Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2014. http://dx.doi.org/10.15242/iicbe.c0214055.
Pełny tekst źródłaYAZICI, AYSENUR, MESUT TASKIN i SERKAN ORTUCU. "The New Promising Oleaginous Yeast for Biodiesel Production". W Fourth International Conference on Advances in Bio-Informatics and Environmental Engineering - ICABEE 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-100-9-59.
Pełny tekst źródłaAlami, Nur Hidayatul, Liziyatin Nasihah, Rurin Luswidya Artaty Umar, Nengah Dwianita Kuswytasari, Enny Zulaika i Maya Shovitri. "Lipase production in lipolytic yeast from Wonorejo mangrove area". W PROCEEDING OF INTERNATIONAL BIOLOGY CONFERENCE 2016: Biodiversity and Biotechnology for Human Welfare. Author(s), 2017. http://dx.doi.org/10.1063/1.4985392.
Pełny tekst źródłaPetrov, Antonio, Fidanka Ilieva, Sanja Velichkovich Kostadinovska i Violeta Dimovska. "INFLUENCE OF INDIGENOUS AND COMMERCIAL YEASTS ON THE PRODUCTION OF RED WINE FROM VRANEC, MERLOT AND FRANKOVKA IN VINICA WINE REGION". W XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.529p.
Pełny tekst źródłaAuziņš, Ernests Tomass. "Kā raugs uzvedas, kad tam atņem būvelementus?" W LU Studentu zinātniskā konference "Mundus et". LU Akadēmiskais apgāds, 2021. http://dx.doi.org/10.22364/lu.szk.2.rk.02.
Pełny tekst źródłaJamai, L., i M. Ettayebi. "Bioethanol production process using the non-conventional yeast Candida tropicalis". W 2013 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2013. http://dx.doi.org/10.1109/irsec.2013.6529710.
Pełny tekst źródłaRagauskaite, Egle, i Dalia Cizeikiene. "Apple squeeze and sugar beet molasses application for yeast invertase production". W 13th Baltic Conference on Food Science and Technology “FOOD. NUTRITION. WELL-BEING”. Latvia University of Life Sciences and Technologies. Faculty of Food Technology, 2019. http://dx.doi.org/10.22616/foodbalt.2019.039.
Pełny tekst źródłaRaporty organizacyjne na temat "Yeast Production"
Scheller, Henrik. Glycobiology in yeast: production of bio-ative biopolymers and small molecules. Office of Scientific and Technical Information (OSTI), kwiecień 2014. http://dx.doi.org/10.2172/1283101.
Pełny tekst źródłaAvalos, Jose. Biosensor and optogenetics for systems biology of yeast branched-chain alcohol production and tolerance. Office of Scientific and Technical Information (OSTI), listopad 2022. http://dx.doi.org/10.2172/1900526.
Pełny tekst źródłaStephanopoulos, Gregory, James Liao, Jens Nielsen, Scott Baker, Andreas Vasdekis, Adrian Fay, Kangjian Qiao i in. Optimizing Oil Production in Oleaginous Yeast by Cell-Wide Measurements and Genome-Based Models (Final Report). Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1821178.
Pełny tekst źródłaHodges, Thomas K., i David Gidoni. Regulated Expression of Yeast FLP Recombinase in Plant Cells. United States Department of Agriculture, wrzesień 2000. http://dx.doi.org/10.32747/2000.7574341.bard.
Pełny tekst źródłaDroby, Samir, Michael Wisniewski, Ron Porat i Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, grudzień 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Pełny tekst źródłaDroby, Samir, Michael Wisniewski, Martin Goldway, Wojciech Janisiewicz i Charles Wilson. Enhancement of Postharvest Biocontrol Activity of the Yeast Candida oleophila by Overexpression of Lytic Enzymes. United States Department of Agriculture, listopad 2003. http://dx.doi.org/10.32747/2003.7586481.bard.
Pełny tekst źródłaChalutz, Edo, Michael Wisniewski, Samir Droby, Yael Eilam i Ilan Chet. Mode of Action of Yeast Biocontrol Agents of Postharvest Diseases of Fruits. United States Department of Agriculture, czerwiec 1996. http://dx.doi.org/10.32747/1996.7613025.bard.
Pełny tekst źródłaCastillo Saldarriaga, Carlos, i Martha Gómez Álvarez. Selection of filtering agent and filter cloth to separate cells of probiotic yeast using a monophasic filter system. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2018. http://dx.doi.org/10.21930/agrosavia.poster.2018.4.
Pełny tekst źródłaAl-Qaisi, Mohmmad, Sara Kvidera, Erin Horst, Carrie Shouse, Johana Mayorga, Nathan Upah, Denny MacKilligan, Leo L. Timms i Lance H. Baumgard. Effects of an Oral Supplement Containing Calcium and Live Yeast on Circulating Calcium and Production Parameters Following I.V. Lipopolysaccharide Infusion in Dairy Cows. Ames (Iowa): Iowa State University, styczeń 2018. http://dx.doi.org/10.31274/ans_air-180814-301.
Pełny tekst źródłaDelmer, Deborah P., Douglas Johnson i Alex Levine. The Role of Small Signal Transducing Gtpases in the Regulation of Cell Wall Deposition Patterns in Plants. United States Department of Agriculture, sierpień 1995. http://dx.doi.org/10.32747/1995.7570571.bard.
Pełny tekst źródła