Artykuły w czasopismach na temat „Yeast Cell Surface”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Yeast Cell Surface”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bae, Jungu, Kouichi Kuroda i Mitsuyoshi Ueda. "Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface". Applied and Environmental Microbiology 81, nr 1 (10.10.2014): 59–66. http://dx.doi.org/10.1128/aem.02864-14.
Pełny tekst źródłaNayyar, Ashima, Graeme Walker, Elisabetta Canetta, Forbes Wardrop i Ashok K. Adya. "Influence of Cell Surface and Nanomechanical Properties on the Flocculation Ability of Industrial Saccharomyces cerevisiae Strains". Journal of Food Research 6, nr 5 (2.08.2017): 1. http://dx.doi.org/10.5539/jfr.v6n5p1.
Pełny tekst źródłaShibasaki, Seiji, i Mitsuyoshi Ueda. "Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals". Microorganisms 11, nr 1 (3.01.2023): 125. http://dx.doi.org/10.3390/microorganisms11010125.
Pełny tekst źródłaINOKUMA, Kentaro, i Tomohisa HASUNUMA. "Evolution of Yeast Cell Surface Engineering". Oleoscience 22, nr 3 (2022): 99–105. http://dx.doi.org/10.5650/oleoscience.22.99.
Pełny tekst źródłaBagnat, M., i K. Simons. "Cell surface polarization during yeast mating". Proceedings of the National Academy of Sciences 99, nr 22 (8.10.2002): 14183–88. http://dx.doi.org/10.1073/pnas.172517799.
Pełny tekst źródłaShimoi, Hitoshi, Kazutoshi Sakamoto, Masaki Okuda, Ratchanee Atthi, Kazuhiro Iwashita i Kiyoshi Ito. "The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast". Applied and Environmental Microbiology 68, nr 4 (kwiecień 2002): 2018–25. http://dx.doi.org/10.1128/aem.68.4.2018-2025.2002.
Pełny tekst źródłaThiebault, F., i J. Coulon. "Influence of carbon source and surface hydrophobicity on the aggregation of the yeastKluyveromyces bulgaricus". Canadian Journal of Microbiology 51, nr 1 (1.01.2005): 91–94. http://dx.doi.org/10.1139/w04-106.
Pełny tekst źródłaShipingana, N. N., N. Raghu, S. Veerana Gowda, T. S. Gopenath, M. S. Ranjith, A. Gnanasekaran, M. Karthikeyan i in. "Cell signaling in yeast: A mini review". Journal of Biomedical Sciences 5, nr 2 (17.04.2019): 18–22. http://dx.doi.org/10.3126/jbs.v5i2.23634.
Pełny tekst źródłaShibasaki, Seiji, Yuki Nakatani, Kazuaki Taketani, Miki Karasaki, Kiyoshi Matsui, Mitsuyoshi Ueda i Tsuyoshi Iwasaki. "Construction of HGF-Displaying Yeast by Cell Surface Engineering". Microorganisms 10, nr 7 (7.07.2022): 1373. http://dx.doi.org/10.3390/microorganisms10071373.
Pełny tekst źródłaColeman, David A., Soon-Hwan Oh, Xiaomin Zhao i Lois L. Hoyer. "Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody". Microbiology 156, nr 12 (1.12.2010): 3645–59. http://dx.doi.org/10.1099/mic.0.043851-0.
Pełny tekst źródłaUEDA, MITSUYOSHI. "Cell surface layer engineering of the yeast." Kagaku To Seibutsu 35, nr 7 (1997): 525–32. http://dx.doi.org/10.1271/kagakutoseibutsu1962.35.525.
Pełny tekst źródłaUeda, Mitsuyoshi, i Atsuo Tanaka. "Cell surface engineering of yeast: Construction of arming yeast with biocatalyst". Journal of Bioscience and Bioengineering 90, nr 2 (styczeń 2000): 125–36. http://dx.doi.org/10.1016/s1389-1723(00)80099-7.
Pełny tekst źródłaUEDA, MITSUYOSHI, i ATSUO TANAKA. "Cell Surface Engineering of Yeast. Construction of Arming Yeast with Biocatalyst." Journal of Bioscience and Bioengineering 90, nr 2 (2000): 125–36. http://dx.doi.org/10.1263/jbb.90.125.
Pełny tekst źródłaBraun, Phyllis C. "Nutrient uptake byCandida albicans: the influence of cell surface mannoproteins". Canadian Journal of Microbiology 45, nr 5 (1.07.1999): 353–59. http://dx.doi.org/10.1139/w99-035.
Pełny tekst źródłaSayin, Ismail, Mehmet Kahraman, Fikrettin Sahin, Dilsad Yurdakul i Mustafa Culha. "Characterization of Yeast Species Using Surface-Enhanced Raman Scattering". Applied Spectroscopy 63, nr 11 (listopad 2009): 1276–82. http://dx.doi.org/10.1366/000370209789806849.
Pełny tekst źródłaGregoire, S., J. Xiao, B. B. Silva, I. Gonzalez, P. S. Agidi, M. I. Klein, K. S. Ambatipudi i in. "Role of Glucosyltransferase B in Interactions of Candida albicans with Streptococcus mutans and with an Experimental Pellicle on Hydroxyapatite Surfaces". Applied and Environmental Microbiology 77, nr 18 (29.07.2011): 6357–67. http://dx.doi.org/10.1128/aem.05203-11.
Pełny tekst źródłaKlis, Frans M., Marian de Jong, Stanley Brul i Piet W. J. de Groot. "Extraction of cell surface-associated proteins from living yeast cells". Yeast 24, nr 4 (2007): 253–58. http://dx.doi.org/10.1002/yea.1476.
Pełny tekst źródłaMacDonald, Chris, i Robert C. Piper. "Cell surface recycling in yeast: mechanisms and machineries". Biochemical Society Transactions 44, nr 2 (11.04.2016): 474–78. http://dx.doi.org/10.1042/bst20150263.
Pełny tekst źródłaColling, Lisa, Michael Essmann, Cara Hollmer i Bryan Larsen. "Surface Modifying Substances that Reduce Apparent Yeast Cell Hydrophobicity". Infectious Diseases in Obstetrics and Gynecology 13, nr 3 (2005): 171–77. http://dx.doi.org/10.1080/10647440500068149.
Pełny tekst źródłaColling, Lisa, Richard N. Carter, Michael Essmann i Bryan Larsen. "Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry". Infectious Diseases in Obstetrics and Gynecology 13, nr 1 (2005): 43–48. http://dx.doi.org/10.1155/2005/739101.
Pełny tekst źródłaTran, Clara T. H., Alexey Kondyurin, Stacey L. Hirsh, David R. McKenzie i Marcela M. M. Bilek. "Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization". Journal of The Royal Society Interface 9, nr 76 (13.06.2012): 2923–35. http://dx.doi.org/10.1098/rsif.2012.0347.
Pełny tekst źródłaNakari-Setälä, Tiina, Joana Azeredo, Mariana Henriques, Rosário Oliveira, José Teixeira, Markus Linder i Merja Penttilä. "Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization". Applied and Environmental Microbiology 68, nr 7 (lipiec 2002): 3385–91. http://dx.doi.org/10.1128/aem.68.7.3385-3391.2002.
Pełny tekst źródłaLi, Yumei, Lili Lu, Hongmei Wang, Xiaodong Xu i Min Xiao. "Cell Surface Engineering of a β-Galactosidase for Galactooligosaccharide Synthesis". Applied and Environmental Microbiology 75, nr 18 (17.07.2009): 5938–42. http://dx.doi.org/10.1128/aem.00326-09.
Pełny tekst źródłaKonnova, S. A., Y. M. Lvov i R. F. Fakhrullin. "Magnetic halloysite nanotubes for yeast cell surface engineering". Clay Minerals 51, nr 3 (czerwiec 2016): 429–33. http://dx.doi.org/10.1180/claymin.2016.051.3.07.
Pełny tekst źródłaFUKUDA, Takeshi, Danya ISOGAWA, Madoka TAKAGI, Michiko KATO-MURAI, Hisashi KIMOTO, Hideo KUSAOKE, Mitsuyoshi UEDA i Shin-ichiro SUYE. "Yeast Cell-Surface Expression of Chitosanase fromPaenibacillus fukuinensis". Bioscience, Biotechnology, and Biochemistry 71, nr 11 (23.11.2007): 2845–47. http://dx.doi.org/10.1271/bbb.70315.
Pełny tekst źródłaKondo, A., i M. Ueda. "Yeast cell-surface display?applications of molecular display". Applied Microbiology and Biotechnology 64, nr 1 (1.03.2004): 28–40. http://dx.doi.org/10.1007/s00253-003-1492-3.
Pełny tekst źródłaRoemer, Terry, i Howard Bussey. "Yeast Kre1p is a cell surface O-glycoprotein". Molecular and General Genetics MGG 249, nr 2 (marzec 1995): 209–16. http://dx.doi.org/10.1007/bf00290368.
Pełny tekst źródłaHossain, SK Amir, SM Rifat Rahman, Toufiq Ahmed i Chanchal Mandal. "An overview of yeast cell wall proteins and their contribution in yeast display system". Asian Journal of Medical and Biological Research 5, nr 4 (3.02.2020): 246–57. http://dx.doi.org/10.3329/ajmbr.v5i4.45261.
Pełny tekst źródłaLu, Dongdong, Songsong Tang, Yangyang Li, Zhaoqing Cong, Xueji Zhang i Song Wu. "Magnetic-Propelled Janus Yeast Cell Robots Functionalized with Metal-Organic Frameworks for Mycotoxin Decontamination". Micromachines 12, nr 7 (5.07.2021): 797. http://dx.doi.org/10.3390/mi12070797.
Pełny tekst źródłaBEUCHAT, L. R., B. V. NAIL, R. E. BRACKETT i T. L. FOX. "Evaluation of a Culture Film (Petrifilm™ YM) Method for Enumerating Yeasts and Molds in Selected Dairy and High-Acid Foods". Journal of Food Protection 53, nr 10 (1.10.1990): 869–74. http://dx.doi.org/10.4315/0362-028x-53.10.869.
Pełny tekst źródłaUEDA, MITSUYOSHI, TOSHIYUKI MURAI, YUMI SHIBASAKI, NAOMI KAMASAWA, MASAKO OSUMI i ATSUO TANAKA. "Molecular Breeding of Polysaccharide-Utilizing Yeast Cells by Cell Surface Engineering". Annals of the New York Academy of Sciences 864, nr 1 ENZYME ENGINE (grudzień 1998): 528–37. http://dx.doi.org/10.1111/j.1749-6632.1998.tb10374.x.
Pełny tekst źródłaWatanabe, Yukio, Wataru Aoki i Mitsuyoshi Ueda. "Improved ammonia production from soybean residues by cell surface-displayed l-amino acid oxidase on yeast". Bioscience, Biotechnology, and Biochemistry 85, nr 4 (21.12.2020): 972–80. http://dx.doi.org/10.1093/bbb/zbaa112.
Pełny tekst źródłaWahyuni, I., U. Purwandari, A. Subagio i N. Nurhayati. "Isolation and identification of gastric acid-tolerant yeast from tapai". Food Research 7, Supplementary 1 (15.08.2023): 276–82. http://dx.doi.org/10.26656/fr.2017.7(s1).13.
Pełny tekst źródłaBouyx, Clara, Marion Schiavone i Jean Marie François. "FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae". Pathogens 10, nr 11 (19.11.2021): 1509. http://dx.doi.org/10.3390/pathogens10111509.
Pełny tekst źródłaUEDA, Mitsuyoshi, i Atsuo TANAKA. "Novel Molecular Breeding of Yeast by Cell Surface Engineering". JOURNAL OF THE BREWING SOCIETY OF JAPAN 94, nr 11 (1999): 860–67. http://dx.doi.org/10.6013/jbrewsocjapan1988.94.860.
Pełny tekst źródłaKondo, Akihiko, Tsutomu Tanaka, Tomohisa Hasunuma i Chiaki Ogino. "Applications of Yeast Cell-Surface Display in Bio-Refinery". Recent Patents on Biotechnology 4, nr 3 (1.11.2010): 226–34. http://dx.doi.org/10.2174/187220810793611509.
Pełny tekst źródłaUeda, Mitsuyoshi, i Atsuo Tanaka. "Genetic immobilization of proteins on the yeast cell surface". Biotechnology Advances 18, nr 2 (kwiecień 2000): 121–40. http://dx.doi.org/10.1016/s0734-9750(00)00031-8.
Pełny tekst źródłaHarsay, E., i A. Bretscher. "Parallel secretory pathways to the cell surface in yeast." Journal of Cell Biology 131, nr 2 (15.10.1995): 297–310. http://dx.doi.org/10.1083/jcb.131.2.297.
Pełny tekst źródłaKono, Keiko, Hiroki Okada i Yoshikazu Ohya. "Local and Acute Disruption of the Yeast Cell Surface". Cold Spring Harbor Protocols 2016, nr 8 (sierpień 2016): pdb.prot085266. http://dx.doi.org/10.1101/pdb.prot085266.
Pełny tekst źródłaZhang, Wei, Bo Zhang, Yu Long Zhang, Da Han i Yong Liang Zhou. "Trapping Yeast Cells on PDMS Micropillar Array". Advanced Materials Research 476-478 (luty 2012): 2096–99. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.2096.
Pełny tekst źródłaBuzzini, Pietro, Benedetta Turchetti, Guglielmina Diolaiuti, Carlo D’Agata i Alessandro Martini. "Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps". Annals of Glaciology 40 (2005): 119–22. http://dx.doi.org/10.3189/172756405781813591.
Pełny tekst źródłaLiu, Yun, Rui Zhang, Zhongshuai Lian, Shihui Wang i Aaron T. Wright. "Yeast cell surface display for lipase whole cell catalyst and its applications". Journal of Molecular Catalysis B: Enzymatic 106 (sierpień 2014): 17–25. http://dx.doi.org/10.1016/j.molcatb.2014.04.011.
Pełny tekst źródłaShenoy, Anjali, Srisaimaneesh Yalamanchili, Alexander R. Davis i Adam W. Barb. "Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain". Antibodies 10, nr 4 (29.09.2021): 38. http://dx.doi.org/10.3390/antib10040038.
Pełny tekst źródłaVialás, Vital, Palani Perumal, Dolores Gutierrez, Pilar Ximénez-Embún, César Nombela, Concha Gil i W. LaJean Chaffin. "Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells". PROTEOMICS 12, nr 14 (sierpień 2012): 2331–39. http://dx.doi.org/10.1002/pmic.201100588.
Pełny tekst źródłaZou, Wen, Mitsuyoshi Ueda i Atsuo Tanaka. "Genetically Controlled Self-Aggregation of Cell-Surface-Engineered Yeast Responding to Glucose Concentration". Applied and Environmental Microbiology 67, nr 5 (1.05.2001): 2083–87. http://dx.doi.org/10.1128/aem.67.5.2083-2087.2001.
Pełny tekst źródłaKlotz, Stephen A., Nicole Bradley i Peter N. Lipke. "Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans". Pathogens 11, nr 9 (1.09.2022): 1000. http://dx.doi.org/10.3390/pathogens11091000.
Pełny tekst źródłaBreinig, Frank, Björn Diehl, Sabrina Rau, Christian Zimmer, Helmut Schwab i Manfred J. Schmitt. "Cell Surface Expression of Bacterial Esterase A by Saccharomyces cerevisiae and Its Enhancement by Constitutive Activation of the Cellular Unfolded Protein Response". Applied and Environmental Microbiology 72, nr 11 (15.09.2006): 7140–47. http://dx.doi.org/10.1128/aem.00503-06.
Pełny tekst źródłaTsygankov, Miklhail A., Andrey M. Rumyantsev, Anastasiya S. Makeeva i Marina V. Padkina. "Comparasion of the effectiveness of anchor proteins ScAGα1p, KpCW51p, KpCW61p for surface display in yeast <i>Komagataella phaffii</i>". Ecological genetics 20, nr 4 (24.12.2022): 359–71. http://dx.doi.org/10.17816/ecogen112509.
Pełny tekst źródłaLe, Phuc H., Duy H. K. Nguyen, Arturo Aburto Medina, Denver P. Linklater, Christian Loebbe, Russell J. Crawford, Shane MacLaughlin i Elena P. Ivanova. "Surface Architecture Influences the Rigidity of Candida albicans Cells". Nanomaterials 12, nr 3 (7.02.2022): 567. http://dx.doi.org/10.3390/nano12030567.
Pełny tekst źródłaBuck, James W., i John H. Andrews. "Localized, Positive Charge Mediates Adhesion ofRhodosporidium toruloides to Barley Leaves and Polystyrene". Applied and Environmental Microbiology 65, nr 5 (1.05.1999): 2179–83. http://dx.doi.org/10.1128/aem.65.5.2179-2183.1999.
Pełny tekst źródła