Gotowa bibliografia na temat „Yeast Cell Surface”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Yeast Cell Surface”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Yeast Cell Surface"
Bae, Jungu, Kouichi Kuroda i Mitsuyoshi Ueda. "Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface". Applied and Environmental Microbiology 81, nr 1 (10.10.2014): 59–66. http://dx.doi.org/10.1128/aem.02864-14.
Pełny tekst źródłaNayyar, Ashima, Graeme Walker, Elisabetta Canetta, Forbes Wardrop i Ashok K. Adya. "Influence of Cell Surface and Nanomechanical Properties on the Flocculation Ability of Industrial Saccharomyces cerevisiae Strains". Journal of Food Research 6, nr 5 (2.08.2017): 1. http://dx.doi.org/10.5539/jfr.v6n5p1.
Pełny tekst źródłaShibasaki, Seiji, i Mitsuyoshi Ueda. "Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals". Microorganisms 11, nr 1 (3.01.2023): 125. http://dx.doi.org/10.3390/microorganisms11010125.
Pełny tekst źródłaINOKUMA, Kentaro, i Tomohisa HASUNUMA. "Evolution of Yeast Cell Surface Engineering". Oleoscience 22, nr 3 (2022): 99–105. http://dx.doi.org/10.5650/oleoscience.22.99.
Pełny tekst źródłaBagnat, M., i K. Simons. "Cell surface polarization during yeast mating". Proceedings of the National Academy of Sciences 99, nr 22 (8.10.2002): 14183–88. http://dx.doi.org/10.1073/pnas.172517799.
Pełny tekst źródłaShimoi, Hitoshi, Kazutoshi Sakamoto, Masaki Okuda, Ratchanee Atthi, Kazuhiro Iwashita i Kiyoshi Ito. "The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast". Applied and Environmental Microbiology 68, nr 4 (kwiecień 2002): 2018–25. http://dx.doi.org/10.1128/aem.68.4.2018-2025.2002.
Pełny tekst źródłaThiebault, F., i J. Coulon. "Influence of carbon source and surface hydrophobicity on the aggregation of the yeastKluyveromyces bulgaricus". Canadian Journal of Microbiology 51, nr 1 (1.01.2005): 91–94. http://dx.doi.org/10.1139/w04-106.
Pełny tekst źródłaShipingana, N. N., N. Raghu, S. Veerana Gowda, T. S. Gopenath, M. S. Ranjith, A. Gnanasekaran, M. Karthikeyan i in. "Cell signaling in yeast: A mini review". Journal of Biomedical Sciences 5, nr 2 (17.04.2019): 18–22. http://dx.doi.org/10.3126/jbs.v5i2.23634.
Pełny tekst źródłaShibasaki, Seiji, Yuki Nakatani, Kazuaki Taketani, Miki Karasaki, Kiyoshi Matsui, Mitsuyoshi Ueda i Tsuyoshi Iwasaki. "Construction of HGF-Displaying Yeast by Cell Surface Engineering". Microorganisms 10, nr 7 (7.07.2022): 1373. http://dx.doi.org/10.3390/microorganisms10071373.
Pełny tekst źródłaColeman, David A., Soon-Hwan Oh, Xiaomin Zhao i Lois L. Hoyer. "Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody". Microbiology 156, nr 12 (1.12.2010): 3645–59. http://dx.doi.org/10.1099/mic.0.043851-0.
Pełny tekst źródłaRozprawy doktorskie na temat "Yeast Cell Surface"
Nayyar, Ashima. "Yeast flocculation : understanding cell surface structure-function relationships in industrial yeast strains". Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/cec13693-e667-4426-ba6c-6873e5c2b642.
Pełny tekst źródłaProszynski, Tomasz. "Protein sorting and cell surface polarity in yeast". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1131974045019-73555.
Pełny tekst źródłaFoster, Alexander J. "Cell surface analysis of the basidiomycete yeast cryptococcus neoformans". Thesis, Aston University, 2004. http://publications.aston.ac.uk/11011/.
Pełny tekst źródłaGeorge, Ellen. "The influence of brewing yeast physiology on cell surface properties". Thesis, Oxford Brookes University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318535.
Pełny tekst źródłaMurai, Toshiyuki. "Studies on genetic display of hydrolytic enzymes on yeast cell surface". Kyoto University, 1998. http://hdl.handle.net/2433/182354.
Pełny tekst źródłaShiraga, Seizaburo. "Studies on modification of functions of hydrolytic enzymes by yeast cell surface engineering". 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144560.
Pełny tekst źródła0048
新制・課程博士
博士(工学)
甲第11889号
工博第2582号
新制||工||1362(附属図書館)
23669
UT51-2005-N723
京都大学大学院工学研究科合成・生物化学専攻
(主査)教授 森 泰生, 教授 今中 忠行, 教授 青山 安宏
学位規則第4条第1項該当
Zou, Wen. "STUDIES ON THE NEW FUNCTIONAL YEAST STRAINS CONSTRUCTED AND SCREENED BY CELL SURFACE ENGINEERING". 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150264.
Pełny tekst źródłaHennig, Stefan. "Utilization of yeast pheromones and hydrophobin-based surface engineering for novel whole-cell sensor applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-223271.
Pełny tekst źródłaChetty, Bronwyn Jean. "Improvement of cell-surface adhered cellulase activities in recombinant strains of Saccharomyces cerevisiae engineered for consolidated bioprocessing". University of Western Cape, 2021. http://hdl.handle.net/11394/8357.
Pełny tekst źródłaConsolidated bioprocessing (CBP), in which a single organism in a single reactor is responsible for the conversion of pretreated lignocellulosic biomass to bioethanol, remains an attractive option for production of commodity products if an organism fit for this process can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second generation bioethanol. Current recombinant yeast strains engineered for this purpose must overcome the drawback of generally low secretion titres. A promising strategy for directly converting lignocellulose to ethanol is by displaying heterologous cellulolytic enzymes on the cell surface by means of the glycosylphosphatidylinositol (GPI) or similar anchoring systems. Recently, a strain producing cell-adhered enzymes in a ratio-optimized manner was created that showed significant crystalline cellulose hydrolysis.
Hennig, Stefan, Gerhard Rödel i Kai Ostermann. "Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214807.
Pełny tekst źródłaKsiążki na temat "Yeast Cell Surface"
Ueda, Mitsuyoshi, red. Yeast Cell Surface Engineering. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5.
Pełny tekst źródłaGeorge, Ellen. The influence of brewing yeast physiology on cell surface properties. Oxford: Oxford Brookes University, 1996.
Znajdź pełny tekst źródłaRhymes, Maureen Ruth. The effect of starvation on brewing yeast cell surface physical characteristics. Oxford: Oxford Brookes University, 1998.
Znajdź pełny tekst źródłaUeda, Mitsuyoshi. Yeast Cell Surface Engineering: Biological Mechanisms and Practical Applications. Springer, 2019.
Znajdź pełny tekst źródłaRead, Nick D. Fungal cell structure and organization. Redaktorzy Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum i Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0004.
Pełny tekst źródłaCzęści książek na temat "Yeast Cell Surface"
Ueda, Mitsuyoshi. "Principle of Cell Surface Engineering of Yeast". W Yeast Cell Surface Engineering, 3–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_1.
Pełny tekst źródłaAoki, Wataru. "Engineering Antibodies and Alternative Binders for Therapeutic Uses". W Yeast Cell Surface Engineering, 123–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_10.
Pełny tekst źródłaShibasaki, Seiji. "Oral Vaccine Development Using Cell Surface Display Technology". W Yeast Cell Surface Engineering, 149–58. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_11.
Pełny tekst źródłaUeda, Mitsuyoshi. "Combinatorial Engineering". W Yeast Cell Surface Engineering, 161–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_12.
Pełny tekst źródłaMiura, Natsuko. "Enzyme Evolution". W Yeast Cell Surface Engineering, 175–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_13.
Pełny tekst źródłaKuroda, Kouichi. "Energy Production: Biomass – Starch, Cellulose, and Hemicellulose". W Yeast Cell Surface Engineering, 17–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_2.
Pełny tekst źródłaTakagi, Toshiyuki. "Energy Production: Biomass – Marine". W Yeast Cell Surface Engineering, 29–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_3.
Pełny tekst źródłaOgino, Chiaki, i Jerome Amoah. "Energy Production: Biodiesel". W Yeast Cell Surface Engineering, 43–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_4.
Pełny tekst źródłaKuroda, Kouichi. "Cleanup of Pollution: Heavy Metal Ions and Environmental Hormones". W Yeast Cell Surface Engineering, 63–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_5.
Pełny tekst źródłaKuroda, Kouichi. "Recovery of Rare Metal Ions". W Yeast Cell Surface Engineering, 73–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Yeast Cell Surface"
Fung, Tracy H., Gregory I. Ball, Sarah C. McQuaide, Shih-Hui Chao, Alejandro Coleman-Lerner, Mark R. Holl i Deirdre R. Meldrum. "Microprinting of On-Chip Cultures: Patterning of Yeast Cell Microarrays Using Concanavalin-A Adhesion". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60866.
Pełny tekst źródłaMarynchenko, L., O. Nizhelska, A. Kurylyuk, V. Makara i S. Naumenko. "Observed effects of electromagnetic fields action on yeast and bacteria cells attached to surfaces". W 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088883.
Pełny tekst źródłaMelhado, Eliana Meire, Letícia Buzzo do Amaral, Leonardo Estrela Thomé, Cibele Alexandra Ferro, Marcelo Freitas Martins, Natalia Prando i Alexandre Haddad de Souza. "Neurocriptococcosis in an immunocompetent patient: a case report". W XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.377.
Pełny tekst źródłaStanojević-Nikolić, Slobodanka, Milan P. Nikolić, Marina Šćiban, Vladimir V. Srdić i Vladimir B. Pavlović. "KINETIC AND EQUILIBRIUM STUDIES OF BIOSORPTION OF Cd(II) IONS USING SILICA-ALGINATE-YEAST COMPOSITE". W 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.323sn.
Pełny tekst źródłaJAWAD, Israa, Adian Abd Alrazak DAKL i Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW". W VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Pełny tekst źródłaRaporty organizacyjne na temat "Yeast Cell Surface"
Droby, Samir, Michael Wisniewski, Ron Porat i Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, grudzień 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Pełny tekst źródła