Artykuły w czasopismach na temat „Xylose as substrate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Xylose as substrate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
van Bastelaere, P., W. Vangrysperre i H. Kersters-Hilderson. "Kinetic studies of Mg2+-, Co2+- and Mn2+-activated d-xylose isomerases". Biochemical Journal 278, nr 1 (15.08.1991): 285–92. http://dx.doi.org/10.1042/bj2780285.
Pełny tekst źródłaWang, Zi-Han, Jing-Yan Tan, Yu-Tong Zhang, Nan-Qi Ren i Lei Zhao. "Evaluating Bio-Hydrogen Production Potential and Energy Conversion Efficiency from Glucose and Xylose under Diverse Concentrations". Fermentation 8, nr 12 (14.12.2022): 739. http://dx.doi.org/10.3390/fermentation8120739.
Pełny tekst źródłaHermansyah, Hermansyah, Fachrijal Fachrijal, Miksusanti Miksusanti, Fatma Fatma, Getari Kasmiarti i Almunadi T. Panagan. "Xylose and Arabinose Fermentation to Produce Ethanol by Isolated Yeasts from Durian (Durio zibethinus L.) Fruit". Molekul 14, nr 2 (30.11.2019): 133. http://dx.doi.org/10.20884/1.jm.2019.14.2.562.
Pełny tekst źródłaZepeda, S., O. Monasterio i T. Ureta. "NADP+-dependent d-xylose dehydrogenase from pig liver. Purification and properties". Biochemical Journal 266, nr 3 (15.03.1990): 637–44. http://dx.doi.org/10.1042/bj2660637.
Pełny tekst źródłaMuñoz-Páez, Karla María, i Germán Buitrón. "Role of xylose from acidic hydrolysates of agave bagasse during biohydrogen production". Water Science and Technology 84, nr 3 (24.06.2021): 656–66. http://dx.doi.org/10.2166/wst.2021.242.
Pełny tekst źródłaKratzer, Regina, Stefan Leitgeb, David K. Wilson i Bernd Nidetzky. "Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis". Biochemical Journal 393, nr 1 (12.12.2005): 51–58. http://dx.doi.org/10.1042/bj20050831.
Pełny tekst źródłaBrink, Daniel P., Celina Borgström, Viktor C. Persson, Karen Ofuji Osiro i Marie F. Gorwa-Grauslund. "D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers". International Journal of Molecular Sciences 22, nr 22 (17.11.2021): 12410. http://dx.doi.org/10.3390/ijms222212410.
Pełny tekst źródłaFurlan, Sandra A., i Heizir F. de Castro. "Xylitol production by Candida parapsilosis under fed-batch culture". Brazilian Archives of Biology and Technology 44, nr 2 (czerwiec 2001): 125–28. http://dx.doi.org/10.1590/s1516-89132001000200003.
Pełny tekst źródłaKuenz, Anja, Malee Jäger, Harri Niemi, Mari Kallioinen, Mika Mänttäri i Ulf Prüße. "Conversion of Xylose from Birch Hemicellulose Hydrolysate to 2,3-Butanediol with Bacillus vallismortis". Fermentation 6, nr 3 (2.09.2020): 86. http://dx.doi.org/10.3390/fermentation6030086.
Pełny tekst źródłaMilessi-Esteves, Thais, Felipe Corradini, Willian Kopp, Teresa Zangirolami, Paulo Tardioli, Roberto Giordano i Raquel Giordano. "An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF)". Catalysts 9, nr 3 (1.03.2019): 225. http://dx.doi.org/10.3390/catal9030225.
Pełny tekst źródłaBarthe, Manon, Josué Tchouanti, Pedro Henrique Gomes, Carine Bideaux, Delphine Lestrade, Carl Graham, Jean-Philippe Steyer i in. "Availability of the Molecular Switch XylR Controls Phenotypic Heterogeneity and Lag Duration during Escherichia coli Adaptation from Glucose to Xylose". mBio 11, nr 6 (22.12.2020): e02938-20. http://dx.doi.org/10.1128/mbio.02938-20.
Pełny tekst źródłaXu, Wei, Rong Shao, Yan Li, Ming Yan i Ping Kai Ouyang. "Study on the Substrate Specificity of Xylose Isomerase N91D Mutant from Thermus thermophilus HB8 by Molecular Simulation". Advanced Materials Research 236-238 (maj 2011): 968–73. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.968.
Pełny tekst źródłaMeijnen, Jean-Paul, Johannes H. de Winde i Harald J. Ruijssenaars. "Engineering Pseudomonas putida S12 for Efficient Utilization of d-Xylose and l-Arabinose". Applied and Environmental Microbiology 74, nr 16 (27.06.2008): 5031–37. http://dx.doi.org/10.1128/aem.00924-08.
Pełny tekst źródłaRamsay, Juliana A., Marie-Claire Aly Hassan i Bruce A. Ramsay. "Hemicellulose as a potential substrate for production of poly(β-hydroxyalkanoates)". Canadian Journal of Microbiology 41, nr 13 (15.12.1995): 262–66. http://dx.doi.org/10.1139/m95-195.
Pełny tekst źródłaXiong, Xiaochao, Xi Wang i Shulin Chen. "Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains". Applied and Environmental Microbiology 78, nr 16 (25.05.2012): 5483–91. http://dx.doi.org/10.1128/aem.08022-11.
Pełny tekst źródłaKarimaki, J., T. Parkkinen, H. Santa, O. Pastinen, M. Leisola, J. Rouvinen i O. Turunen. "Engineering the substrate specificity of xylose isomerase". Protein Engineering Design and Selection 17, nr 12 (16.02.2005): 861–69. http://dx.doi.org/10.1093/protein/gzh099.
Pełny tekst źródłaKanoh, Yoshitaka, Seiichiroh Uehara, Hideyuki Iwata, Kazunari Yoneda, Toshihisa Ohshima i Haruhiko Sakuraba. "Structural insight into glucose dehydrogenase from the thermoacidophilic archaeonThermoplasma volcanium". Acta Crystallographica Section D Biological Crystallography 70, nr 5 (29.04.2014): 1271–80. http://dx.doi.org/10.1107/s1399004714002363.
Pełny tekst źródłaTaguchi, Fumiaki, Naoki Mizukami, Katsushige Hasegawa i Tatsuo Saito-Taki. "Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2." Canadian Journal of Microbiology 40, nr 3 (1.03.1994): 228–33. http://dx.doi.org/10.1139/m94-037.
Pełny tekst źródłaBeck, Ashley E. "Metabolic Efficiency of Sugar Co-Metabolism and Phenol Degradation in Alicyclobacillus acidocaldarius for Improved Lignocellulose Processing". Processes 8, nr 5 (27.04.2020): 502. http://dx.doi.org/10.3390/pr8050502.
Pełny tekst źródłaVangrysperre, W., M. Callens, H. Kersters-Hilderson i C. K. De Bruyne. "Evidence for an essential histidine residue in d-xylose isomerases". Biochemical Journal 250, nr 1 (15.02.1988): 153–60. http://dx.doi.org/10.1042/bj2500153.
Pełny tekst źródłaBazarnova, Yuliya, Olga Bolotnikova, Natalia Michailova i Jing Pu. "Optimization of parameters of alcohol fermentation of xylose-containing inedible substrates using the yeast Pachysolen Tannophilus". MATEC Web of Conferences 245 (2018): 18006. http://dx.doi.org/10.1051/matecconf/201824518006.
Pełny tekst źródłaSimāo, R. C. G., C. G. M. Souza i R. M. Peralta. "The use of methyl β-D-xyloside as a substrate for xylanase production by Aspergillus tamarii". Canadian Journal of Microbiology 43, nr 1 (1.01.1997): 56–60. http://dx.doi.org/10.1139/m97-008.
Pełny tekst źródłaMeng, M., C. Lee, M. Bagdasarian i J. G. Zeikus. "Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket." Proceedings of the National Academy of Sciences 88, nr 9 (1.05.1991): 4015–19. http://dx.doi.org/10.1073/pnas.88.9.4015.
Pełny tekst źródłaHasona, Adnan, Youngnyun Kim, F. G. Healy, L. O. Ingram i K. T. Shanmugam. "Pyruvate Formate Lyase and Acetate Kinase Are Essential for Anaerobic Growth of Escherichia coli on Xylose". Journal of Bacteriology 186, nr 22 (15.11.2004): 7593–600. http://dx.doi.org/10.1128/jb.186.22.7593-7600.2004.
Pełny tekst źródłaLópez-Contreras, Ana M., Krisztina Gabor, Aernout A. Martens, Bernadet A. M. Renckens, Pieternel A. M. Claassen, John van der Oost i Willem M. de Vos. "Substrate-Induced Production and Secretion of Cellulases by Clostridium acetobutylicum". Applied and Environmental Microbiology 70, nr 9 (wrzesień 2004): 5238–43. http://dx.doi.org/10.1128/aem.70.9.5238-5243.2004.
Pełny tekst źródłaAlencar, Bárbara Ribeiro Alves, Renan Anderson Alves de Freitas, Victor Emanuel Petrício Guimarães, Rayssa Karla Silva, Carolina Elsztein, Suzyanne Porfírio da Silva, Emmanuel Damilano Dutra, Marcos Antonio de Morais Junior i Rafael Barros de Souza. "Meyerozyma caribbica Isolated from Vinasse-Irrigated Sugarcane Plantation Soil: A Promising Yeast for Ethanol and Xylitol Production in Biorefineries". Journal of Fungi 9, nr 8 (26.07.2023): 789. http://dx.doi.org/10.3390/jof9080789.
Pełny tekst źródłaChen, Xiu Ju, Xiao Qin Liu, Fang Lian Xu i Xin Peng Bai. "Degradation Kinetics of Xylose and Arabinose in Subcritical Water in Unitary and Binary System". Advanced Materials Research 450-451 (styczeń 2012): 710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.710.
Pełny tekst źródłaHurlbert, Jason C., i James F. Preston. "Functional Characterization of a Novel Xylanase from a Corn Strain of Erwinia chrysanthemi". Journal of Bacteriology 183, nr 6 (15.03.2001): 2093–100. http://dx.doi.org/10.1128/jb.183.6.2093-2100.2001.
Pełny tekst źródłaSchepers, Hans-Jürgen, Stephanie Bringer-Meyer i Hermann Sahm. "Fermentation of D-Xylose to Ethanol by Bacillus macerans". Zeitschrift für Naturforschung C 42, nr 4 (1.04.1987): 401–7. http://dx.doi.org/10.1515/znc-1987-0412.
Pełny tekst źródłaWagschal, Kurt, Diana Franqui-Espiet, Charles C. Lee, George H. Robertson i Dominic W. S. Wong. "Enzyme-Coupled Assay for β-Xylosidase Hydrolysis of Natural Substrates". Applied and Environmental Microbiology 71, nr 9 (wrzesień 2005): 5318–23. http://dx.doi.org/10.1128/aem.71.9.5318-5323.2005.
Pełny tekst źródłaLiu, Yunyun, Yunqi Cao, Qiang Yu, Jingliang Xu i Zhenhong Yuan. "Enhanced sugars production with high conversion efficiency from alkali-pretreated sugarcane bagasse by enzymatic mixtures". BioResources 15, nr 2 (6.04.2020): 3839–49. http://dx.doi.org/10.15376/biores.15.2.3839-3849.
Pełny tekst źródłaYulianto, Wisnu Adi, Kapti Rahayu Kuswanto, Tranggono Tranggono i Retno Indrati. "Pengaruh Konsentrasi Xilosa dan Kosubstrat Terhadap Produksi Xilitol oleh Candida shehatae Way 08". agriTECH 25, nr 3 (23.02.2017): 143. http://dx.doi.org/10.22146/agritech.13352.
Pełny tekst źródłaLeandro, Maria José, Paula Gonçalves i Isabel Spencer-Martins. "Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose–H+ symporter". Biochemical Journal 395, nr 3 (11.04.2006): 543–49. http://dx.doi.org/10.1042/bj20051465.
Pełny tekst źródłaYoung, Eric, Ashley Poucher, Austin Comer, Alexandra Bailey i Hal Alper. "Functional Survey for Heterologous Sugar Transport Proteins, Using Saccharomyces cerevisiae as a Host". Applied and Environmental Microbiology 77, nr 10 (18.03.2011): 3311–19. http://dx.doi.org/10.1128/aem.02651-10.
Pełny tekst źródłaSiegbahn, Anna, Sophie Manner, Andrea Persson, Emil Tykesson, Karin Holmqvist, Agata Ochocinska, Jerk Rönnols i in. "Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site". Chem. Sci. 5, nr 9 (2014): 3501–8. http://dx.doi.org/10.1039/c4sc01244e.
Pełny tekst źródłaKlongklaew, Augchararat, Kridsada Unban, Apinun Kanpiengjai, Pairote Wongputtisin, Punnita Pamueangmun, Kalidas Shetty i Chartchai Khanongnuch. "Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9". Fermentation 7, nr 2 (10.06.2021): 95. http://dx.doi.org/10.3390/fermentation7020095.
Pełny tekst źródłaVogl, Michael, i Lothar Brecker. "Substrate binding to Candida tenuis xylose reductase during catalysis". RSC Advances 3, nr 48 (2013): 25997. http://dx.doi.org/10.1039/c3ra41448e.
Pełny tekst źródłaPateraki, Chrysanthi, Henrik Almqvist, Dimitris Ladakis, Gunnar Lidén, Apostolis A. Koutinas i Anestis Vlysidis. "Modelling succinic acid fermentation using a xylose based substrate". Biochemical Engineering Journal 114 (październik 2016): 26–41. http://dx.doi.org/10.1016/j.bej.2016.06.011.
Pełny tekst źródłaMardawati, Efri, Andi Trirakhmadi, MTAP Kresnowati i Tjandra Setiadi. "Kinetic study on Fermentation of xylose for The Xylitol Production". Journal of Industrial and Information Technology in Agriculture 1, nr 1 (13.08.2017): 1. http://dx.doi.org/10.24198/jiita.v1i1.12214.
Pełny tekst źródłaKim, In Seop, Kevin D. Barrow i Peter L. Rogers. "Kinetic and Nuclear Magnetic Resonance Studies of Xylose Metabolism by Recombinant Zymomonas mobilisZM4(pZB5)". Applied and Environmental Microbiology 66, nr 1 (1.01.2000): 186–93. http://dx.doi.org/10.1128/aem.66.1.186-193.2000.
Pełny tekst źródłaAhuja, Vishal, Aashima Sharma, Ranju Kumari Rathour, Vaishali Sharma, Nidhi Rana i Arvind Kumar Bhatt. "In-Vitro and In-Silico Characterization of Xylose Reductase from Emericella nidulans". Current Chemical Biology 13, nr 2 (12.07.2019): 159–70. http://dx.doi.org/10.2174/2212796812666180622103906.
Pełny tekst źródłaOHNISHI, Masatake, Yokox FUJIOKA, Shigeo TAKEWUTI, Takahito YOSHIDA, Chieko HASHIZUME, Keitaro HIROMI i Benichiro TONOMURA. "Substrate binding site of Streptomyces xylose isomerase, studied by the fluorescence spectrophotometry using xylose and xylitol." Journal of the Japanese Society of Starch Science 38, nr 1 (1991): 41–44. http://dx.doi.org/10.5458/jag1972.38.41.
Pełny tekst źródłaAmbarsari, Laksmi, Suryani Suryani, Steffanus Gozales i Puspa Julistia Puspita. "The Addition Effects of Glucose as a Co-substrate on Xylitol Production by Candida guilliermondii". Current Biochemistry 2, nr 1 (20.04.2015): 13–21. http://dx.doi.org/10.29244/cb.2.1.13-21.
Pełny tekst źródłaPalnitkar, Sanjay, i Anil Lachke. "Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae". Canadian Journal of Microbiology 38, nr 3 (1.03.1992): 258–60. http://dx.doi.org/10.1139/m92-043.
Pełny tekst źródłaLevin, Ana M., Ronald P. de Vries, Ana Conesa, Charissa de Bekker, Manuel Talon, Hildegard H. Menke, Noel N. M. E. van Peij i Han A. B. Wösten. "Spatial Differentiation in the Vegetative Mycelium of Aspergillus niger". Eukaryotic Cell 6, nr 12 (19.10.2007): 2311–22. http://dx.doi.org/10.1128/ec.00244-07.
Pełny tekst źródłaKarekar, Supriya, Keerthi Srinivas i Birgitte Ahring. "Kinetic Study on Heterotrophic Growth of Acetobacterium woodii on Lignocellulosic Substrates for Acetic Acid Production". Fermentation 5, nr 1 (2.02.2019): 17. http://dx.doi.org/10.3390/fermentation5010017.
Pełny tekst źródłaSwart, Reuben Marc, Hendrik Brink i Willie Nicol. "Rhizopus oryzae for Fumaric Acid Production: Optimising the Use of a Synthetic Lignocellulosic Hydrolysate". Fermentation 8, nr 6 (15.06.2022): 278. http://dx.doi.org/10.3390/fermentation8060278.
Pełny tekst źródłaPETSCHACHER, Barbara, Stefan LEITGEB, Kathryn L. KAVANAGH, David K. WILSON i Bernd NIDETZKY. "The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography". Biochemical Journal 385, nr 1 (14.12.2004): 75–83. http://dx.doi.org/10.1042/bj20040363.
Pełny tekst źródłaSarkar, Nibedita, i Kaustav Aikat. "Kinetic Study of Acid Hydrolysis of Rice Straw". ISRN Biotechnology 2013 (22.12.2013): 1–5. http://dx.doi.org/10.5402/2013/170615.
Pełny tekst źródłaKopp, Dominik, Peter L. Bergquist i Anwar Sunna. "Enzymology of Alternative Carbohydrate Catabolic Pathways". Catalysts 10, nr 11 (23.10.2020): 1231. http://dx.doi.org/10.3390/catal10111231.
Pełny tekst źródła