Artykuły w czasopismach na temat „XGBOOST PREDICTION MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „XGBOOST PREDICTION MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhao, Haolei, Yixian Wang, Xian Li, Panpan Guo i Hang Lin. "Prediction of Maximum Tunnel Uplift Caused by Overlying Excavation Using XGBoost Algorithm with Bayesian Optimization". Applied Sciences 13, nr 17 (28.08.2023): 9726. http://dx.doi.org/10.3390/app13179726.
Pełny tekst źródłaGu, Xinqin, Li Yao i Lifeng Wu. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms". Sustainability 15, nr 16 (13.08.2023): 12333. http://dx.doi.org/10.3390/su151612333.
Pełny tekst źródłaLiu, Jialin, Jinfa Wu, Siru Liu, Mengdie Li, Kunchang Hu i Ke Li. "Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model". PLOS ONE 16, nr 2 (4.02.2021): e0246306. http://dx.doi.org/10.1371/journal.pone.0246306.
Pełny tekst źródłaWang, Jun, Wei Rong, Zhuo Zhang i Dong Mei. "Credit Debt Default Risk Assessment Based on the XGBoost Algorithm: An Empirical Study from China". Wireless Communications and Mobile Computing 2022 (19.03.2022): 1–14. http://dx.doi.org/10.1155/2022/8005493.
Pełny tekst źródłaGu, Zhongyuan, Miaocong Cao, Chunguang Wang, Na Yu i Hongyu Qing. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model". Sustainability 14, nr 16 (22.08.2022): 10421. http://dx.doi.org/10.3390/su141610421.
Pełny tekst źródłaKang, Leilei, Guojing Hu, Hao Huang, Weike Lu i Lan Liu. "Urban Traffic Travel Time Short-Term Prediction Model Based on Spatio-Temporal Feature Extraction". Journal of Advanced Transportation 2020 (14.08.2020): 1–16. http://dx.doi.org/10.1155/2020/3247847.
Pełny tekst źródłaWang, Wenle, Wentao Xiong, Jing Wang, Lei Tao, Shan Li, Yugen Yi, Xiang Zou i Cui Li. "A User Purchase Behavior Prediction Method Based on XGBoost". Electronics 12, nr 9 (28.04.2023): 2047. http://dx.doi.org/10.3390/electronics12092047.
Pełny tekst źródłaOubelaid, Adel, Abdelhameed Ibrahim i Ahmed M. Elshewey. "Bridging the Gap: An Explainable Methodology for Customer Churn Prediction in Supply Chain Management". Journal of Artificial Intelligence and Metaheuristics 4, nr 1 (2023): 16–23. http://dx.doi.org/10.54216/jaim.040102.
Pełny tekst źródłaLiu, Yuan, Wenyi Du, Yi Guo, Zhiqiang Tian i Wei Shen. "Identification of high-risk factors for recurrence of colon cancer following complete mesocolic excision: An 8-year retrospective study". PLOS ONE 18, nr 8 (11.08.2023): e0289621. http://dx.doi.org/10.1371/journal.pone.0289621.
Pełny tekst źródłaHe, Wenwen, Hongli Le i Pengcheng Du. "Stroke Prediction Model Based on XGBoost Algorithm". International Journal of Applied Sciences & Development 1 (13.12.2022): 7–10. http://dx.doi.org/10.37394/232029.2022.1.2.
Pełny tekst źródłaShin, Juyoung, Joonyub Lee, Taehoon Ko, Kanghyuck Lee, Yera Choi i Hun-Sung Kim. "Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness". Journal of Personalized Medicine 12, nr 11 (14.11.2022): 1899. http://dx.doi.org/10.3390/jpm12111899.
Pełny tekst źródłaWu, Kehe, Yanyu Chai, Xiaoliang Zhang i Xun Zhao. "Research on Power Price Forecasting Based on PSO-XGBoost". Electronics 11, nr 22 (16.11.2022): 3763. http://dx.doi.org/10.3390/electronics11223763.
Pełny tekst źródłaXiong, Shuai, Zhixiang Liu, Chendi Min, Ying Shi, Shuangxia Zhang i Weijun Liu. "Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm". Materials 16, nr 1 (28.12.2022): 308. http://dx.doi.org/10.3390/ma16010308.
Pełny tekst źródłaWang, Yu, Li Guo, Yanrui Zhang i Xinyue Ma. "Research on CSI 300 Stock Index Price Prediction Based On EMD-XGBoost". Frontiers in Computing and Intelligent Systems 3, nr 1 (17.03.2023): 72–77. http://dx.doi.org/10.54097/fcis.v3i1.6027.
Pełny tekst źródłaYang, Tian. "Sales Prediction of Walmart Sales Based on OLS, Random Forest, and XGBoost Models". Highlights in Science, Engineering and Technology 49 (21.05.2023): 244–49. http://dx.doi.org/10.54097/hset.v49i.8513.
Pełny tekst źródłaLi, Kunluo. "A Sales Prediction Method Based on XGBoost Algorithm Model". BCP Business & Management 36 (13.01.2023): 367–71. http://dx.doi.org/10.54691/bcpbm.v36i.3487.
Pełny tekst źródłaYang, Hao, Jiaxi Li, Siru Liu, Xiaoling Yang i Jialin Liu. "Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record–Based Machine Learning: Development and Validation". JMIR Medical Informatics 10, nr 6 (16.06.2022): e36958. http://dx.doi.org/10.2196/36958.
Pełny tekst źródłaSyafrudin, Muhammad, Ganjar Alfian, Norma Latif Fitriyani, Muhammad Anshari, Tony Hadibarata, Agung Fatwanto i Jongtae Rhee. "A Self-Care Prediction Model for Children with Disability Based on Genetic Algorithm and Extreme Gradient Boosting". Mathematics 8, nr 9 (15.09.2020): 1590. http://dx.doi.org/10.3390/math8091590.
Pełny tekst źródłaLi, Weihong, i Xiujuan Xu. "Ensemble learning algorithm - research analysis on the management of financial fraud and violation in listed companies". Decision Making: Applications in Management and Engineering 6, nr 2 (15.10.2023): 722–33. http://dx.doi.org/10.31181/dmame622023785.
Pełny tekst źródłaRasaizadi, Arash, i Seyedehsan Seyedabrishami. "Stacking Ensemble Learning Process to Predict Rural Road Traffic Flow". Journal of Advanced Transportation 2022 (1.06.2022): 1–12. http://dx.doi.org/10.1155/2022/3198636.
Pełny tekst źródłaLu, Xin, Cai Chen, RuiDan Gao i ZhenZhen Xing. "Prediction of High-Speed Traffic Flow around City Based on BO-XGBoost Model". Symmetry 15, nr 7 (20.07.2023): 1453. http://dx.doi.org/10.3390/sym15071453.
Pełny tekst źródłaZhang, Chao, Yihang Zhao i Huiru Zhao. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach". Mathematics 10, nr 21 (1.11.2022): 4072. http://dx.doi.org/10.3390/math10214072.
Pełny tekst źródłaTang, Jinjun, Lanlan Zheng, Chunyang Han, Fang Liu i Jianming Cai. "Traffic Incident Clearance Time Prediction and Influencing Factor Analysis Using Extreme Gradient Boosting Model". Journal of Advanced Transportation 2020 (9.06.2020): 1–12. http://dx.doi.org/10.1155/2020/6401082.
Pełny tekst źródłaHuang, Yongfen, Can Chen i Yuqing Miao. "Prediction Model of Bone Marrow Infiltration in Patients with Malignant Lymphoma Based on Logistic Regression and XGBoost Algorithm". Computational and Mathematical Methods in Medicine 2022 (28.06.2022): 1–7. http://dx.doi.org/10.1155/2022/9620780.
Pełny tekst źródłaThongprayoon, Charat, Pattharawin Pattharanitima, Andrea G. Kattah, Michael A. Mao, Mira T. Keddis, John J. Dillon, Wisit Kaewput i in. "Explainable Preoperative Automated Machine Learning Prediction Model for Cardiac Surgery-Associated Acute Kidney Injury". Journal of Clinical Medicine 11, nr 21 (24.10.2022): 6264. http://dx.doi.org/10.3390/jcm11216264.
Pełny tekst źródłaZhang, Ping, Rongqin Wang i Nianfeng Shi. "IgA Nephropathy Prediction in Children with Machine Learning Algorithms". Future Internet 12, nr 12 (17.12.2020): 230. http://dx.doi.org/10.3390/fi12120230.
Pełny tekst źródłaFeng, Dachun, Bing Zhou, Shahbaz Gul Hassan, Longqin Xu, Tonglai Liu, Liang Cao, Shuangyin Liu i Jianjun Guo. "A Hybrid Model for Temperature Prediction in a Sheep House". Animals 12, nr 20 (17.10.2022): 2806. http://dx.doi.org/10.3390/ani12202806.
Pełny tekst źródłaYuan, Yufei, Ruoran Wang, Mingyue Luo, Yidan Zhang, Fanfan Guo, Guiqin Bai, Yang Yang i JingZhao. "A Machine Learning Approach Using XGBoost Predicts Lung Metastasis in Patients with Ovarian Cancer". BioMed Research International 2022 (12.10.2022): 1–8. http://dx.doi.org/10.1155/2022/8501819.
Pełny tekst źródłaChen, Mujun, Xiangmei Meng, Guangming Kan, Jingqiang Wang, Guanbao Li, Baohua Liu, Chenguang Liu, Yanguang Liu, Yuanxu Liu i Junjie Lu. "Predicting the Sound Speed of Seafloor Sediments in the East China Sea Based on an XGBoost Algorithm". Journal of Marine Science and Engineering 10, nr 10 (24.09.2022): 1366. http://dx.doi.org/10.3390/jmse10101366.
Pełny tekst źródłaGopatoti, Anandbabu. "A novel metaheuristic prediction approach for COVID-19 cases using XGBoost algorithm". International Journal of Scientific Methods in Intelligence Engineering Networks 01, nr 01 (2023): 85–93. http://dx.doi.org/10.58599/ijsmien.2023.1108.
Pełny tekst źródłaChen, Yuhuan, i Yingqing Jiang. "Construction of Prediction Model of Deep Vein Thrombosis Risk after Total Knee Arthroplasty Based on XGBoost Algorithm". Computational and Mathematical Methods in Medicine 2022 (25.01.2022): 1–6. http://dx.doi.org/10.1155/2022/3452348.
Pełny tekst źródłaYang, Zhao, Yifan Wang, Jie Li, Liming Liu, Jiyang Ma i Yi Zhong. "Airport Arrival Flow Prediction considering Meteorological Factors Based on Deep-Learning Methods". Complexity 2020 (26.10.2020): 1–11. http://dx.doi.org/10.1155/2020/6309272.
Pełny tekst źródłaOh, Sejong, Yuli Park, Kyong Jin Cho i Seong Jae Kim. "Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation". Diagnostics 11, nr 3 (13.03.2021): 510. http://dx.doi.org/10.3390/diagnostics11030510.
Pełny tekst źródłaXu, Bing, Youcheng Tan, Weibang Sun, Tianxing Ma, Hengyu Liu i Daguo Wang. "Study on the Prediction of the Uniaxial Compressive Strength of Rock Based on the SSA-XGBoost Model". Sustainability 15, nr 6 (15.03.2023): 5201. http://dx.doi.org/10.3390/su15065201.
Pełny tekst źródłaHarriz, Muhammad Alfathan, Nurhaliza Vania Akbariani, Harlis Setiyowati i Handri Santoso. "Enhancing the Efficiency of Jakarta's Mass Rapid Transit System with XGBoost Algorithm for Passenger Prediction". Jambura Journal of Informatics 5, nr 1 (27.04.2023): 1–6. http://dx.doi.org/10.37905/jji.v5i1.18814.
Pełny tekst źródłaLiu, Linxiang, Yuan Nie, Qi Liu i Xuan Zhu. "A Practical Model for Predicting Esophageal Variceal Rebleeding in Patients with Hepatitis B-Associated Cirrhosis". International Journal of Clinical Practice 2023 (3.08.2023): 1–11. http://dx.doi.org/10.1155/2023/9701841.
Pełny tekst źródłaGuo, Jiang, Chen Zhang, Shoudong Xie i Yi Liu. "Research on the Prediction Model of Blasting Vibration Velocity in the Dahuangshan Mine". Applied Sciences 12, nr 12 (8.06.2022): 5849. http://dx.doi.org/10.3390/app12125849.
Pełny tekst źródłaYuan, Jianming. "Predicting Death Risk of COVID-19 Patients Leveraging Machine Learning Algorithm". Applied and Computational Engineering 8, nr 1 (1.08.2023): 186–90. http://dx.doi.org/10.54254/2755-2721/8/20230122.
Pełny tekst źródłaLi, Mingguang, Runyi Huang i Yumiao Yang. "Short-term wind speed prediction based on combinatorial prediction model". Highlights in Science, Engineering and Technology 60 (25.07.2023): 274–82. http://dx.doi.org/10.54097/hset.v60i.10534.
Pełny tekst źródłaLi, Xiangcheng, Jialong Wang, Zhirui Geng, Yang Jin i Jiawei Xu. "Short-term Wind Power Prediction Method Based on Genetic Algorithm Optimized XGBoost Regression Model". Journal of Physics: Conference Series 2527, nr 1 (1.06.2023): 012061. http://dx.doi.org/10.1088/1742-6596/2527/1/012061.
Pełny tekst źródłaKuthe, Annaji, Chaitanya Bhake, Vaibhav Bhoyar, Aman Yenurkar, Vedant Khandekar i Ketan Gawale. "Water Quality Prediction Using Machine Learning". International Journal of Computer Science and Mobile Computing 12, nr 4 (30.04.2023): 52–59. http://dx.doi.org/10.47760/ijcsmc.2023.v12i04.006.
Pełny tekst źródłaMeng, Delin, Jun Xu i Jijun Zhao. "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost". PLOS ONE 16, nr 12 (22.12.2021): e0261629. http://dx.doi.org/10.1371/journal.pone.0261629.
Pełny tekst źródłaLin, Xiaoxuan, Lixin Chen, Defu Zhang, Shuyu Luo, Yuanyuan Sheng, Xiaohua Liu, Qian Liu i in. "Prediction of Surgical Approach in Mitral Valve Disease by XGBoost Algorithm Based on Echocardiographic Features". Journal of Clinical Medicine 12, nr 3 (2.02.2023): 1193. http://dx.doi.org/10.3390/jcm12031193.
Pełny tekst źródłaDing, Chao, Yuwen Guo, Qinqin Mo i Jin Ma. "Prediction Model of Postoperative Severe Hypocalcemia in Patients with Secondary Hyperparathyroidism Based on Logistic Regression and XGBoost Algorithm". Computational and Mathematical Methods in Medicine 2022 (25.07.2022): 1–7. http://dx.doi.org/10.1155/2022/8752826.
Pełny tekst źródłaMoore, Alexander, i Max Bell. "XGBoost, A Novel Explainable AI Technique, in the Prediction of Myocardial Infarction: A UK Biobank Cohort Study". Clinical Medicine Insights: Cardiology 16 (styczeń 2022): 117954682211336. http://dx.doi.org/10.1177/11795468221133611.
Pełny tekst źródłaXu, Jialing, Jingxing He, Jinqiang Gu, Huayang Wu, Lei Wang, Yongzhen Zhu, Tiejun Wang, Xiaoling He i Zhangyuan Zhou. "Financial Time Series Prediction Based on XGBoost and Generative Adversarial Networks". International Journal of Circuits, Systems and Signal Processing 16 (15.01.2022): 637–45. http://dx.doi.org/10.46300/9106.2022.16.79.
Pełny tekst źródłaJin, Deyan. "Risk Prediction Method of Obstetric Nursing Based on Data Mining". Contrast Media & Molecular Imaging 2022 (24.08.2022): 1–11. http://dx.doi.org/10.1155/2022/5100860.
Pełny tekst źródłaDai, Hongbin, Guangqiu Huang, Huibin Zeng i Fan Yang. "PM2.5 Concentration Prediction Based on Spatiotemporal Feature Selection Using XGBoost-MSCNN-GA-LSTM". Sustainability 13, nr 21 (1.11.2021): 12071. http://dx.doi.org/10.3390/su132112071.
Pełny tekst źródłaNarvekar, Aditya, i Debashis Guha. "Bankruptcy prediction using machine learning and an application to the case of the COVID-19 recession". Data Science in Finance and Economics 1, nr 2 (2021): 180–95. http://dx.doi.org/10.3934/dsfe.2021010.
Pełny tekst źródłaKartina Diah Kusuma Wardani i Memen Akbar. "Diabetes Risk Prediction using Feature Importance Extreme Gradient Boosting (XGBoost)". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, nr 4 (12.08.2023): 824–31. http://dx.doi.org/10.29207/resti.v7i4.4651.
Pełny tekst źródła