Gotowa bibliografia na temat „XGBOOST PREDICTION MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „XGBOOST PREDICTION MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "XGBOOST PREDICTION MODEL"
Zhao, Haolei, Yixian Wang, Xian Li, Panpan Guo i Hang Lin. "Prediction of Maximum Tunnel Uplift Caused by Overlying Excavation Using XGBoost Algorithm with Bayesian Optimization". Applied Sciences 13, nr 17 (28.08.2023): 9726. http://dx.doi.org/10.3390/app13179726.
Pełny tekst źródłaGu, Xinqin, Li Yao i Lifeng Wu. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms". Sustainability 15, nr 16 (13.08.2023): 12333. http://dx.doi.org/10.3390/su151612333.
Pełny tekst źródłaLiu, Jialin, Jinfa Wu, Siru Liu, Mengdie Li, Kunchang Hu i Ke Li. "Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model". PLOS ONE 16, nr 2 (4.02.2021): e0246306. http://dx.doi.org/10.1371/journal.pone.0246306.
Pełny tekst źródłaWang, Jun, Wei Rong, Zhuo Zhang i Dong Mei. "Credit Debt Default Risk Assessment Based on the XGBoost Algorithm: An Empirical Study from China". Wireless Communications and Mobile Computing 2022 (19.03.2022): 1–14. http://dx.doi.org/10.1155/2022/8005493.
Pełny tekst źródłaGu, Zhongyuan, Miaocong Cao, Chunguang Wang, Na Yu i Hongyu Qing. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model". Sustainability 14, nr 16 (22.08.2022): 10421. http://dx.doi.org/10.3390/su141610421.
Pełny tekst źródłaKang, Leilei, Guojing Hu, Hao Huang, Weike Lu i Lan Liu. "Urban Traffic Travel Time Short-Term Prediction Model Based on Spatio-Temporal Feature Extraction". Journal of Advanced Transportation 2020 (14.08.2020): 1–16. http://dx.doi.org/10.1155/2020/3247847.
Pełny tekst źródłaWang, Wenle, Wentao Xiong, Jing Wang, Lei Tao, Shan Li, Yugen Yi, Xiang Zou i Cui Li. "A User Purchase Behavior Prediction Method Based on XGBoost". Electronics 12, nr 9 (28.04.2023): 2047. http://dx.doi.org/10.3390/electronics12092047.
Pełny tekst źródłaOubelaid, Adel, Abdelhameed Ibrahim i Ahmed M. Elshewey. "Bridging the Gap: An Explainable Methodology for Customer Churn Prediction in Supply Chain Management". Journal of Artificial Intelligence and Metaheuristics 4, nr 1 (2023): 16–23. http://dx.doi.org/10.54216/jaim.040102.
Pełny tekst źródłaLiu, Yuan, Wenyi Du, Yi Guo, Zhiqiang Tian i Wei Shen. "Identification of high-risk factors for recurrence of colon cancer following complete mesocolic excision: An 8-year retrospective study". PLOS ONE 18, nr 8 (11.08.2023): e0289621. http://dx.doi.org/10.1371/journal.pone.0289621.
Pełny tekst źródłaHe, Wenwen, Hongli Le i Pengcheng Du. "Stroke Prediction Model Based on XGBoost Algorithm". International Journal of Applied Sciences & Development 1 (13.12.2022): 7–10. http://dx.doi.org/10.37394/232029.2022.1.2.
Pełny tekst źródłaRozprawy doktorskie na temat "XGBOOST PREDICTION MODEL"
Pettersson, Gustav, i John Almqvist. "Lavinprognoser och maskininlärning : Att prediktera lavinprognoser med maskininlärning och väderdata". Thesis, Uppsala universitet, Institutionen för informatik och media, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-387205.
Pełny tekst źródłaThis research project examines the feasibility of using machine learning to predict avalanche dangerby usingXGBoostand openly available weather data. Avalanche forecasts and meterological modelledweather data have been gathered for the six areas in Sweden where Naturvårdsverket throughlavin-prognoser.seissues avalanche forecasts. The avanlanche forecasts are collected fromlavinprognoser.seand the modelled weather data is collected from theMESANmodel, which is produced and providedby the Swedish Meteorological and Hydrological Institute. 40 machine learning models, in the form ofXGBoost, have been trained on this data set, with the goal of assessing the main aspects of an avalan-che forecast and the overall avalanche danger. The results show it is possible to predict the day to dayavalanche danger for the 2018/19 season inSödra Jämtlandsfjällenwith an accuracy of 71% and a MeanAverage Error of 0.256, by applying machine learning to the weather data for that region. The contribu-tion ofXGBoostin this context, is demonstrated by applying the simpler method ofLogistic Regressionon the data set and comparing the results. Thelogistic regressionperforms worse with an accuracy of56% and a Mean Average Error of 0.459. The contribution of this research is a proof of concept, showingfeasibility in predicting avalanche danger in Sweden, with the help of machine learning and weather data.
Henriksson, Erik, i Kristopher Werlinder. "Housing Price Prediction over Countrywide Data : A comparison of XGBoost and Random Forest regressor models". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302535.
Pełny tekst źródłaMålet med den här studien är att jämföra och undersöka hur en XGBoost regressor och en Random Forest regressor presterar i att förutsäga huspriser. Detta görs med hjälp av två stycken datauppsättningar. Jämförelsen tar hänsyn till modellernas träningstid, slutledningstid och de tre utvärderingsfaktorerna R2, RMSE and MAPE. Datauppsättningarna beskrivs i detalj tillsammans med en bakgrund om regressionsmodellerna. Metoden innefattar en rengöring av datauppsättningarna, sökande efter optimala hyperparametrar för modellerna och 5delad korsvalidering för att uppnå goda förutsägelser. Resultatet av studien är att XGBoost regressorn presterar bättre på både små och stora datauppsättningar, men att den är överlägsen när det gäller stora datauppsättningar. Medan Random Forest modellen kan uppnå liknande resultat som XGBoost modellen, tar träningstiden mellan 250 gånger så lång tid och modellen får en cirka 40 gånger längre slutledningstid. Detta gör att XGBoost är särskilt överlägsen vid användning av stora datauppsättningar.
Kinnander, Mathias. "Predicting profitability of new customers using gradient boosting tree models : Evaluating the predictive capabilities of the XGBoost, LightGBM and CatBoost algorithms". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19171.
Pełny tekst źródłaSvensson, William. "CAN STATISTICAL MODELS BEAT BENCHMARK PREDICTIONS BASED ON RANKINGS IN TENNIS?" Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447384.
Pełny tekst źródłaHerrmann, Vojtěch. "Moderní predikční metody pro finanční časové řady". Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-437908.
Pełny tekst źródłaKELLER, AISHWARYA. "HYBRID RESAMPLING AND XGBOOST PREDICTION MODEL USING PATIENT'S INFORMATION AND DRAWING AS FEATURES FOR PARKINSON'S DISEASE DETECTION". Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19442.
Pełny tekst źródła(5930375), Junhui Wang. "SYSTEMATICALLY LEARNING OF INTERNAL RIBOSOME ENTRY SITE AND PREDICTION BY MACHINE LEARNING". Thesis, 2019.
Znajdź pełny tekst źródłaSalvaire, Pierre Antony Jean Marie. "Explaining the predictions of a boosted tree algorithm : application to credit scoring". Master's thesis, 2019. http://hdl.handle.net/10362/85991.
Pełny tekst źródłaThe main goal of this report is to contribute to the adoption of complex « Black Box » machine learning models in the field of credit scoring for retail credit. Although numerous investigations have been showing the potential benefits of using complex models, we identified the lack of interpretability as one of the main vector preventing from a full and trustworthy adoption of these new modeling techniques. Intrinsically linked with recent data concerns such as individual rights for explanation, fairness (introduced in the GDPR1) or model reliability, we believe that this kind of research is crucial for easing its adoption among credit risk practitioners. We build a standard Linear Scorecard model along with a more advanced algorithm called Extreme Gradient Boosting (XGBoost) on a retail credit open source dataset. The modeling scenario is a binary classification task consisting in identifying clients that will experienced 90 days past due delinquency state or worse. The interpretation of the Scorecard model is performed using the raw output of the algorithm while more complex data perturbation technique, namely Partial Dependence Plots and Shapley Additive Explanations methods are computed for the XGBoost algorithm. As a result, we observe that the XGBoost algorithm is statistically more performant at distinguishing “bad” from “good” clients. Additionally, we show that the global interpretation of the XGBoost is not as accurate as the Scorecard algorithm. At an individual level however (for each instance of the dataset), we show that the level of interpretability is very similar as they are both able to quantify the contribution of each variable to the predicted risk of a specific application.
Części książek na temat "XGBOOST PREDICTION MODEL"
Zhong, Weijian, Xiaoqin Lian, Chao Gao, Xiang Chen i Hongzhou Tan. "PM2.5 Concentration Prediction Based on mRMR-XGBoost Model". W Machine Learning and Intelligent Communications, 327–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04409-0_30.
Pełny tekst źródłaYu, Sun, Liwei Tian, Yijun Liu i Yuankai Guo. "LSTM-XGBoost Application of the Model to the Prediction of Stock Price". W Lecture Notes in Computer Science, 86–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78609-0_8.
Pełny tekst źródłaRatre, Sushila, i Jyotsna Jayaraj. "Sales Prediction Using ARIMA, Facebook’s Prophet and XGBoost Model of Machine Learning". W Lecture Notes in Electrical Engineering, 101–11. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5868-7_9.
Pełny tekst źródłaSanchez-Atuncar, Giancarlo, Victor Manuel Cabrejos-Yalán i Yesenia del Rosario Vasquez-Valencia. "Machine Learning Model Optimization for Energy Efficiency Prediction in Buildings Using XGBoost". W Lecture Notes in Networks and Systems, 309–15. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33258-6_29.
Pełny tekst źródłaPradeep, S., M. Kishore, G. Oviya, S. Poorani i R. Anitha. "XGBoost-Based Prediction and Evaluation Model for Enchanting Subscribers in Industrial Sector". W Proceedings of Fourth International Conference on Computing, Communications, and Cyber-Security, 283–95. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1479-1_22.
Pełny tekst źródłaUttam, Atul Kumar. "Urinary System Diseases Prediction Using Supervised Machine Learning-Based Model: XGBoost and Random Forest". W Lecture Notes in Electrical Engineering, 179–85. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8542-2_14.
Pełny tekst źródłaHojaji, Fazilat, Adam J. Toth i Mark J. Campbell. "A Machine Learning Approach for Modeling and Analyzing of Driver Performance in Simulated Racing". W Communications in Computer and Information Science, 95–105. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_8.
Pełny tekst źródłaTahsin, Labeba, i Shaily Roy. "Prediction of COVID-19 Severity Level Using XGBoost Algorithm: A Machine Learning Approach Based on SIR Epidemiological Model". W Intelligent Systems and Sustainable Computing, 69–78. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0011-2_7.
Pełny tekst źródłaDong, W., Y. Huang, B. Lehane i G. Ma. "An Intelligent Multi-objective Design Optimization Method for Nanographite-Based Electrically Conductive Cementitious Composites". W Lecture Notes in Civil Engineering, 339–46. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_35.
Pełny tekst źródłaDierckx, Thomas, Jesse Davis i Wim Schoutens. "Quantifying News Narratives to Predict Movements in Market Risk". W Data Science for Economics and Finance, 265–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_12.
Pełny tekst źródłaStreszczenia konferencji na temat "XGBOOST PREDICTION MODEL"
Siyuan, Liu, Liu Jingyuan, Gu Hangping i Ren Minhua. "Sleep staging prediction model based on XGBoost". W 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). IEEE, 2021. http://dx.doi.org/10.1109/eiecs53707.2021.9587974.
Pełny tekst źródłaAl-Mudhafar, Watheq J., i David A. Wood. "Tree-Based Ensemble Algorithms for Lithofacies Classification and Permeability Prediction in Heterogeneous Carbonate Reservoirs". W Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31780-ms.
Pełny tekst źródłaAl-Mudhafar, Watheq J., i David A. Wood. "Tree-Based Ensemble Algorithms for Lithofacies Classification and Permeability Prediction in Heterogeneous Carbonate Reservoirs". W Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31780-ms.
Pełny tekst źródłaMa, Tao, Yusen Zhang, Xiangxin Nie, Xinchao Zhao i Yexing Li. "An XGBoost-based Electric Vehicle Battery Consumption Prediction Model". W 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2021. http://dx.doi.org/10.1109/icpics52425.2021.9524291.
Pełny tekst źródłaQiongyu, Shi. "Prediction of O2O Coupon Usage Based on XGBoost Model". W ICEME '20: 2020 The 11th International Conference on E-business, Management and Economics. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3414752.3414775.
Pełny tekst źródłaWang, Yiying, Zhe Yan i Lidong Xing. "A Movie Score Prediction Model Based on XGBoost Algorithm". W 2021 International Conference on Culture-oriented Science & Technology (ICCST). IEEE, 2021. http://dx.doi.org/10.1109/iccst53801.2021.00108.
Pełny tekst źródłaDuan, Ran, You Li, Baohua Qiang i Laixin Zhou. "A Feature Selection-Based XGBoost Model for Fault Prediction". W 2021 17th International Conference on Computational Intelligence and Security (CIS). IEEE, 2021. http://dx.doi.org/10.1109/cis54983.2021.00056.
Pełny tekst źródłaZhang, Zhixin, Gaofeng Xu, Hongting Wang i Kaibo Zhou. "Anode Effect prediction based on Expectation Maximization and XGBoost model". W 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2018. http://dx.doi.org/10.1109/ddcls.2018.8516046.
Pełny tekst źródłaGupta, Aashish, Shilpa Sharma, Shubham Goyal i Mamoon Rashid. "Novel XGBoost Tuned Machine Learning Model for Software Bug Prediction". W 2020 International Conference on Intelligent Engineering and Management (ICIEM). IEEE, 2020. http://dx.doi.org/10.1109/iciem48762.2020.9160152.
Pełny tekst źródłaTang, Qi, Guoen Xia, Xianquan Zhang i Feng Long. "A Customer Churn Prediction Model Based on XGBoost and MLP". W 2020 International Conference on Computer Engineering and Application (ICCEA). IEEE, 2020. http://dx.doi.org/10.1109/iccea50009.2020.00133.
Pełny tekst źródła