Gotowa bibliografia na temat „Xenograft tumors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Xenograft tumors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Xenograft tumors"
Siu, I.-Mei, Vafi Salmasi, Brent A. Orr, Qi Zhao, Zev A. Binder, Christine Tran, Masaru Ishii, Gregory J. Riggins, Christine L. Hann i Gary L. Gallia. "Establishment and characterization of a primary human chordoma xenograft model". Journal of Neurosurgery 116, nr 4 (kwiecień 2012): 801–9. http://dx.doi.org/10.3171/2011.12.jns111123.
Pełny tekst źródłaSicklick, Jason Keith, Stephanie Yvette Leonard, Evangeline Mose, Randall P. French, Michele Criscuoli, Dawn V. Jaquish, Karly Maruyama, Richard B. Schwab, David Cheresh i Andrew M. Lowy. "A novel xenograft model of gastrointestinal stromal tumors." Journal of Clinical Oncology 30, nr 4_suppl (1.02.2012): 202. http://dx.doi.org/10.1200/jco.2012.30.4_suppl.202.
Pełny tekst źródłaDavies, Jason M., Aaron E. Robinson, Cynthia Cowdrey, Praveen V. Mummaneni, Gregory S. Ducker, Kevan M. Shokat, Andrew Bollen, Byron Hann i Joanna J. Phillips. "Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma". Journal of Neurosurgery 120, nr 2 (luty 2014): 331–36. http://dx.doi.org/10.3171/2013.10.jns13598.
Pełny tekst źródłaPham, Khoa, Allison R. Hanaford, Brad A. Poore, Micah J. Maxwell, Heather Sweeney, Akhila Parthasarathy, Jesse Alt i in. "Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways". Cancers 14, nr 5 (3.03.2022): 1311. http://dx.doi.org/10.3390/cancers14051311.
Pełny tekst źródłaKijima, Noriyuki, Yoshikazu Nakajima, Daisuke Kanematsu, Tomoko Shofuda, Yuichiro Higuchi, Hiroshi Suemizu, Kanji Mori i in. "TMOD-29. ESTABLISHMENT OF PATIENT-DERIVED XENOGRAFTS FROM RARE PRIMARY BRAIN TUMORS". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii234. http://dx.doi.org/10.1093/neuonc/noaa215.979.
Pełny tekst źródłaDougherty, Mark, Eric Taylor i Marlan Hansen. "TMET-34. RADIATION METABOLOMICS IN PRIMARY HUMAN MENINGIOMA AND SCHWANNOMA: EARLY EXPERIENCE AND INITIAL RESULTS". Neuro-Oncology 24, Supplement_7 (1.11.2022): vii269. http://dx.doi.org/10.1093/neuonc/noac209.1039.
Pełny tekst źródłaDong, Yiyu, Brandon Manley, A. Ari Hakimi, Jonathan A. Coleman, Paul Russo i James Hsieh. "Comparing surgical tissue versus biopsy tissue in the development of a clear cell renal cell carcinoma xenograft model." Journal of Clinical Oncology 34, nr 2_suppl (10.01.2016): 519. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.519.
Pełny tekst źródłaBreij, Esther CW, David Satijn, Sandra Verploegen, Bart de Goeij, Danita Schuurhuis, Wim Bleeker, Mischa Houtkamp i Paul Parren. "Use of an antibody-drug conjugate targeting tissue factor to induce complete tumor regression in xenograft models with heterogeneous target expression." Journal of Clinical Oncology 31, nr 15_suppl (20.05.2013): 3066. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3066.
Pełny tekst źródłaLukbanova, E. A., M. V. Mindar, E. A. Dzhenkova, A. Yu Maksimov, A. S. Goncharova, Yu S. Shatova, A. A. Maslov, A. V. Shaposhnikov, E. V. Zaikina i Yu N. Lazutin. "Experimental approach to obtaining subcutaneous xenograft of non-small cell lung cancer". Research and Practical Medicine Journal 9, nr 2 (4.05.2022): 65–76. http://dx.doi.org/10.17709/2410-1893-2022-9-2-5.
Pełny tekst źródłaDobbin, Zachary C., Ashwini A. Katre, Angela Ziebarth, Monjri Shah, Adam D. Steg, Ronald David Alvarez, Michael G. Conner i Charles N. Landen. "Use of an optimized primary ovarian cancer xenograft model to mimic patient tumor biology and heterogeneity." Journal of Clinical Oncology 30, nr 15_suppl (20.05.2012): 5036. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.5036.
Pełny tekst źródłaRozprawy doktorskie na temat "Xenograft tumors"
Cataldo, A. "ANTI-TUMOR ACTIVITY OF CPG-ODN IN OVARIAN XENOGRAFT TUMORS". Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/229558.
Pełny tekst źródłaWilliams, K. J., M. R. Albertella, B. Fitzpatrick, Paul M. Loadman, Steven D. Shnyder, E. C. Chinje, B. A. Telfer, C. R. Dunk, P. A. Harris i I. J. Stratford. "In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenograft". AACR Publications, 2009. http://hdl.handle.net/10454/4561.
Pełny tekst źródłaAQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic.
Tin, Man Ying. "Study of the anticarcinogenic mechanisms of astragalus membranaceus in colon cancer cells and tumor xenograft". HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/777.
Pełny tekst źródłaPfeffer, Nils Christian Verfasser], i Udo [Akademischer Betreuer] [Schumacher. "Expression of HIF-1alpha and GLUT-1 in human xenograft tumors in immundeficient mice / Nils Christian Pfeffer. Betreuer: Udo Schumacher". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1038789192/34.
Pełny tekst źródłaMaftei, Constantin Alin Verfasser], Christine [Akademischer Betreuer] Bayer, Peter [Akademischer Betreuer] [Vaupel i Gabriele [Akademischer Betreuer] Multhoff. "Determination of the dynamics of tumor hypoxia during radiation therapy using biological imaging on mouse xenograft tumors / Constantin Alin Maftei. Gutachter: Peter Vaupel ; Gabriele Multhoff. Betreuer: Christine Bayer". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1034134779/34.
Pełny tekst źródłaCarpenter, Kent James. "Inhibition of PIM and AXL Kinases As Potential Treatments for a Variety of Hematological Malignancies and Solid Tumors". BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/3842.
Pełny tekst źródłaSARONNI, DAVIDE. "TYROSINE KINASE INHIBITORS IN NEUROENDOCRINE TUMORS: FROM IN VITRO TO ZEBRAFISH MODEL". Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/917967.
Pełny tekst źródłaWalter, Thomas. "Métastases hépatiques de tumeurs endocrines digestives : développement de modèles animaux pour l’étude des mécanismes biologiques et l’évaluation préclinique des thérapeutiques". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10241.
Pełny tekst źródłaLiver metastases of digestive endocrine tumors are hypervascular and heterogeneous. The mechanisms of development of these metastases, especially the role of angiogenesis, are complex. This explains the difficulty to predict the natural history of these tumors and to find predictive factors of response to medical treatments. Our aim was to evaluate: the role of angiogenesis in the development of liver metastasis from digestive endocrine tumors; mechanisms of action, especially antiangiogenic activity, of two drugs (somatostatin analogues and mTOR inhibitor). We were able to demonstrate through an in vitro and in vivo experimental approach that: (a) the regulation of VEGF synthesis and secretion is complex, with different roles according to the cell studied; (b) there is a dissociation between VEGF expression and angiogenic capacities, on one hand, and invasive and metastatic properties, on the other hand; (c) the inhibition of angiogenesis may contribute to the anti-tumoral effect of several drugs of therapeutic interest in digestive endocrine tumors
Faizi, M. A. H. P. "The effect of hyperthermia and irradiation on a human ovary tumour xenograft". Thesis, Bucks New University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380292.
Pełny tekst źródłaHuang, Ting [Verfasser], i Aladár [Gutachter] Szalay. "Vaccinia Virus-mediated Therapy of Solid Tumor Xenografts: Intra-tumoral Delivery of Therapeutic Antibodies / Ting Huang. Gutachter: Aladar Szalay". Würzburg : Universität Würzburg, 2015. http://d-nb.info/1108780555/34.
Pełny tekst źródłaKsiążki na temat "Xenograft tumors"
Winograd, Benjamin, Michael Peckham i Herbert Michael Pinedo, red. Human Tumour Xenografts in Anticancer Drug Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73252-2.
Pełny tekst źródłaSeminar on Human Tumour Xenografts (1986 Milan, Italy). Human tumour xenografts in anticancer drug development. Berlin: Springer-Verlag, 1988.
Znajdź pełny tekst źródłaB, Winograd, Peckham Michael J, Pinedo H. M i European School of Oncology, red. Human tumour xenografts in anticancer drug development. Berlin: Springer, 1988.
Znajdź pełny tekst źródłaUthamanthil, Rajesh, Peggy Tinkey i Elisa de Stanchina. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Znajdź pełny tekst źródłaTinkey, Peggy, Elisa de Stanchina i Rajesh K. Uthamanthil. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Znajdź pełny tekst źródłaPatient Derived Tumor Xenograft Models. Elsevier, 2017. http://dx.doi.org/10.1016/c2015-0-00204-0.
Pełny tekst źródłaWinograd, Benjamin. Human Tumour Xenografts in Anticancer Drug Development. Springer, 2012.
Znajdź pełny tekst źródłaPinedo, Herbert M., Michael Peckham i Benjamin Winograd. Human Tumour Xenografts in Anticancer Drug Development. Springer London, Limited, 2013.
Znajdź pełny tekst źródła(Editor), H. M. Pinedo, red. Human Tumour Xenografts in Anticancer Drug Development (Eso Monographs (European School of Oncology)). Springer, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Xenograft tumors"
O’Hara, Julia A., Rosalyn D. Blumenthal, Oleg Y. Grinberg, Stalina Grinberg, Carmen Wilmot, David M. Goldenberg i Harold M. Swartz. "Tumor pO2 Assessments in Human Xenograft Tumors Measured by EPR Oximetry: Location of Paramagnetic Materials". W Oxygen Transport to Tissue XXIV, 205–14. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0075-9_20.
Pełny tekst źródłaHoffman, Robert M., Atsushi Suetsugu, Tasuku Kiyuna, Shuya Yano i Michael Bouvet. "Fluorescence Imaging of Tumors in Human Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models". W Molecular and Translational Medicine, 207–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57424-0_15.
Pełny tekst źródłaQazi, Maleeha, Aneet Mann, Randy van Ommeren, Chitra Venugopal, Nicole McFarlane, Parvez Vora i Sheila K. Singh. "Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for In Vivo Analysis of the Brain Tumor-Initiating Cell". W Stem Cells and Tissue Repair, 37–49. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1435-7_4.
Pełny tekst źródłaLiu, Ming, i Daniel Hicklin. "Human Tumor Xenograft Efficacy Models". W Tumor Models in Cancer Research, 99–124. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_5.
Pełny tekst źródłaDong, Xin, Peter W. Gout, Lu Yi, Yinhuai Wang, Yong Xu i Kuo Yang. "First-Generation Tumor Xenografts: A Link Between Patient-Derived Xenograft Models and Clinical Disease". W Patient-Derived Xenograft Models of Human Cancer, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_11.
Pełny tekst źródłaPresta, Marco, Giulia De Sena i Chiara Tobia. "The Zebrafish/Tumor Xenograft Angiogenesis Assay". W The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications, 253–68. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4581-0_16.
Pełny tekst źródłaLin, Dong, Xinya Wang, Peter W. Gout i Yuzhuo Wang. "Patient-Derived Tumor Xenografts: Historical Background". W Patient-Derived Xenograft Models of Human Cancer, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_1.
Pełny tekst źródłaKopper, L., P. Nagy, J. Rajnay i K. Lapis. "Xenografted Human Tumors in Preclinical Drug Design". W Human Tumour Xenografts in Anticancer Drug Development, 138. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73252-2_31.
Pełny tekst źródłaGreen, Colin, Hakim Djeha, Gail Rowlinson-Busza, Christina Kousparou i Agamemnon A. Epenetos. "Xenograft Mouse Models for Tumour Targeting". W Antibody Engineering, 463–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_35.
Pełny tekst źródłaSharma, Surinder K., i R. Barbara Pedley. "Xenograft Mouse Models for Tumour Targeting". W Antibody Engineering, 477–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_36.
Pełny tekst źródłaStreszczenia konferencji na temat "Xenograft tumors"
Singh-Gupta, Vinita, Fulvio Lonardo, Joseph Rakowski, Christopher Yunker, Shirish Gadgeel i Gilda Hillman. "Abstract LB-264: Axitinib improves radiotherapy for murine xenograft lung tumors". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-264.
Pełny tekst źródłaSamkoe, Kimberley S., Alina Chen, Imran Rizvi, Julia A. O'Hara, P. Jack Hoopes, Tayyaba Hasan i Brian W. Pogue. "Magnetic resonance image-guided photodynamic therapy of xenograft pancreas tumors with verteporfin". W SPIE BiOS: Biomedical Optics, redaktor David H. Kessel. SPIE, 2009. http://dx.doi.org/10.1117/12.809857.
Pełny tekst źródłaNguyen, Uyen, Johanna Webb, Rebecca Schmitz, Kelsey Tweed, Anna Huttenlocher, Melissa C. Skala i Alex J. Walsh. "Optical imaging of zebrafish xenograft tumors for a high throughput drugs screen". W Multiscale Imaging and Spectroscopy II, redaktorzy Kristen C. Maitland, Darren M. Roblyer i Paul J. Campagnola. SPIE, 2021. http://dx.doi.org/10.1117/12.2577637.
Pełny tekst źródłaSaito, Tomoki, Shinya Ohashi, Ayaka Mizumoto, Osamu Kikuchi, Kotaro Matsumoto, Aoi Komatsu, Seiji Naganuma i in. "Abstract 1670: Characterization of the chick chorioallantoic membrane tumor model in comparison with various xenograft mouse tumors". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1670.
Pełny tekst źródłaChou, Ting-Chao, Xiuguo Zhang, Huajin Dong i Samuel J. Danishefsky. "Abstract 3527: Therapeutic cure against five human xenograft tumors and strongly suppressed drug-resistant and refractory xenograft tumors in nude mice by the third generation epothilone: Iso-oxazole fludelone". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3527.
Pełny tekst źródłaBrabetz, Sebastian, Huriye Seker-Cin, Susanne N. Gröbner, Norman L. Mack, Volker Hovestadt, David T. W. Jones, Till Milde i in. "Abstract A07: Molecular characterization of patient-derived xenograft models of pediatric brain tumors". W Abstracts: Patient-Derived Cancer Models: Present and Future Applications from Basic Science to the Clinic; February 11-14, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3265.pdx16-a07.
Pełny tekst źródłaGarmendia, Irati, Cristina Bértolo, Irene Ferrer, María J. Pajares, Daniel Ajona, Luis Paz-Ares, Ruben Pio, Luis M. Montuenga i Jackeline Agorreta. "Abstract LB-084: Dasatinib reduces tumor growth in xenograft models derived from human lung tumors with YES1 overexpression". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-084.
Pełny tekst źródłaQi, Lin, Baxter A. Patricia, Kogiso Mari, Du Yuchen, Lindsay Holly, Liu Zhigang, Xiumei Zhao i in. "Abstract 1450: Autopsy derived orthotopic xenograft (ADOX) mouse models for terminal pediatric brain tumors". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1450.
Pełny tekst źródłaOlson, Devra J., Anita Kulukian, Janelle D. Taylor, Margo C. Zaval, Albina Nesterova, Kelly M. Hensley, Michelle L. Ulrich, Nicole S. Stevens i Scott R. Peterson. "Abstract 1962: Preclinical characterization of tucatinib in HER2-amplified xenograft and CNS implanted tumors". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1962.
Pełny tekst źródłaBrabetz, Sebastian, Susanne N. Gröbner, Huriye Seker-Cin, Florian Selt, Till Milde, David T. Jones, Madison T. Wise i in. "Abstract 1935: Molecular characterization of orthotopic patient-derived xenograft models of pediatric brain tumors". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1935.
Pełny tekst źródłaRaporty organizacyjne na temat "Xenograft tumors"
Li, Xiao-Nan. Harnessing Autopsied DIPG Tumor Tissues for Orthotopic Xenograft Model Development in the Brain Stems of SCID Mice. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada568355.
Pełny tekst źródła