Artykuły w czasopismach na temat „X-ray diffraction”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: X-ray diffraction.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „X-ray diffraction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Iqra Zubair Awan, Iqra Zubair Awan. "X-Ray Diffraction – The Magic Wand". Journal of the chemical society of pakistan 42, nr 3 (2020): 317. http://dx.doi.org/10.52568/000646.

Pełny tekst źródła
Streszczenie:
This review paper covers one of the most important discoveries of the last century, viz. X-ray diffraction. It has made enormous contribution to chemistry, physics, engineering, materials science, crystallography and above all medical sciences. The review covers the history of X-rays detection and production, its uses/ applications. The scientific and medical community will forever be indebted to Rand#246;ntgen for this invaluable discovery and to those who perfected its application.
Style APA, Harvard, Vancouver, ISO itp.
2

Iqra Zubair Awan, Iqra Zubair Awan. "X-Ray Diffraction – The Magic Wand". Journal of the chemical society of pakistan 42, nr 3 (2020): 317. http://dx.doi.org/10.52568/000646/jcsp/42.03.2020.

Pełny tekst źródła
Streszczenie:
This review paper covers one of the most important discoveries of the last century, viz. X-ray diffraction. It has made enormous contribution to chemistry, physics, engineering, materials science, crystallography and above all medical sciences. The review covers the history of X-rays detection and production, its uses/ applications. The scientific and medical community will forever be indebted to Rand#246;ntgen for this invaluable discovery and to those who perfected its application.
Style APA, Harvard, Vancouver, ISO itp.
3

Jung, Ji Eun, Yu Rim Jang, Ki-Wook Kim, Sangcheol Heo i Ji-Sook Min. "The analytical application for cement using X-Ray diffraction and X-Ray fluorescence spectrometer". Analytical Science and Technology 26, nr 5 (25.10.2013): 340–51. http://dx.doi.org/10.5806/ast.2013.26.5.340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ilinca, Gheorghe, i Emil Makovicky. "X-ray powder diffraction properties of pavonite homologues". European Journal of Mineralogy 11, nr 4 (16.07.1999): 691–708. http://dx.doi.org/10.1127/ejm/11/4/0691.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

KOBAYASHI, Shintaro. "Surface X-ray Diffraction". Journal of the Japan Society of Colour Material 87, nr 1 (2014): 31–35. http://dx.doi.org/10.4011/shikizai.87.31.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Takahashi, Toshio. "X-ray surface diffraction." Bulletin of the Japan Institute of Metals 28, nr 3 (1989): 203–7. http://dx.doi.org/10.2320/materia1962.28.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Robinson, I. K. "Surface X-ray diffraction". Acta Crystallographica Section A Foundations of Crystallography 43, a1 (12.08.1987): C205. http://dx.doi.org/10.1107/s0108767387080024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wark, J. "Femtosecond X-ray diffraction". Acta Crystallographica Section A Foundations of Crystallography 62, a1 (6.08.2006): s2. http://dx.doi.org/10.1107/s010876730609996x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Afanas'ev, Alexander M., Rafik M. Imamov i Enver Kh Mukhmedzhanov. "Asymmetric X-Ray Diffraction". Crystallography Reviews 3, nr 2 (listopad 1992): 157–226. http://dx.doi.org/10.1080/08893119208032970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Robinson, I. K., i D. J. Tweet. "Surface X-ray diffraction". Reports on Progress in Physics 55, nr 5 (1.05.1992): 599–651. http://dx.doi.org/10.1088/0034-4885/55/5/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

CAVALLERI, ANDREA, CRAIG W. SIDERS, KLAUS SOKOLOWSKI-TINTEN, CSABA TÓTH, CHRISTIAN BLOME, JEFF A. SQUIER, DIETRICH VON DER LINDE, CHRISTOPHER P. J. BARTY i KENT R. WILSON. "Femtosecond X-Ray Diffraction". Optics and Photonics News 12, nr 5 (1.05.2001): 28. http://dx.doi.org/10.1364/opn.12.5.000028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Grant, J. A., M. J. Morgan, J. R. Davis, D. R. Davies i P. Wells. "X-ray diffraction microtomography". Measurement Science and Technology 4, nr 1 (1.01.1993): 83–87. http://dx.doi.org/10.1088/0957-0233/4/1/014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

MacDowell, A. A., R. S. Celestre, N. Tamura, R. Spolenak, B. Valek, W. L. Brown, J. C. Bravman, H. A. Padmore, B. W. Batterman i J. R. Patel. "Submicron X-ray diffraction". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468 (lipiec 2001): 936–43. http://dx.doi.org/10.1016/s0168-9002(01)00530-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

JACOBY, MITCH. "FEMTOSECOND X-RAY DIFFRACTION". Chemical & Engineering News 75, nr 49 (8.12.1997): 5. http://dx.doi.org/10.1021/cen-v075n049.p005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Thibault, Pierre, i Veit Elser. "X-Ray Diffraction Microscopy". Annual Review of Condensed Matter Physics 1, nr 1 (10.08.2010): 237–55. http://dx.doi.org/10.1146/annurev-conmatphys-070909-104034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wark, J. S., i H. He. "Subpicosecond X-ray diffraction". Laser and Particle Beams 12, nr 3 (wrzesień 1994): 507–13. http://dx.doi.org/10.1017/s0263034600008363.

Pełny tekst źródła
Streszczenie:
With the advent of ultrashort (subpicosecond) high-power lasers it is now possible to create intense bursts of X-rays with subpicosecond durations. An analysis of the temporal response of diffraction of such X-rays by crystals in both the dynamical and kinematic regime is presented. It is also shown that under certain conditions the temporal resolution can be determined by the response of the crystal.
Style APA, Harvard, Vancouver, ISO itp.
17

Gasymov, V. A., i G. F. Hasanov. "SYNTHESIS AND X-RAY DIFFRACTION STUDY OF Pb4Yb2S7 COMPOUND". Chemical Problems 18, nr 3 (2020): 382–87. http://dx.doi.org/10.32737/2221-8688-2020-3-382-387.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Yoneda, Yasuhiro, Yoshiki Kohmura, Yoshio Suzuki, Shin'ichi Hamazaki i Masaaki Takashige. "OS04W0020 Ferroelectric domain observation by X-ray diffraction topography". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS04W0020. http://dx.doi.org/10.1299/jsmeatem.2003.2._os04w0020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Irzhak, D. V., M. A. Knyasev, V. I. Punegov i D. V. Roshchupkin. "X-ray diffraction by phase diffraction gratings". Journal of Applied Crystallography 48, nr 4 (18.07.2015): 1159–64. http://dx.doi.org/10.1107/s1600576715011607.

Pełny tekst źródła
Streszczenie:
The diffraction properties of phase gratings with the periodD= 1.6, 1.0 and 0.5 µm fabricated on an Si(111) crystal by e-beam lithography were studied by triple-axis X-ray diffraction. A 100 nm-thick tungsten layer was used as a phase-shift layer. It is shown that the presence of a grating as a phase-shift W layer on the surface of the Si(111) crystal causes the formation of a complicated two-dimensional diffraction pattern related to the diffraction of X-rays on the phase grating at the X-ray entrance and exit from the crystal. A model of X-ray diffraction on the W phase diffraction grating is proposed.
Style APA, Harvard, Vancouver, ISO itp.
20

Ba Ha, Truong, i I. Ya Dubovskaya. "Diffraction X-Ray Radiation under Multiwave Diffraction". physica status solidi (b) 155, nr 2 (1.10.1989): 685–95. http://dx.doi.org/10.1002/pssb.2221550240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Nittono, Osamu. "X-ray Dynamical Diffraction Techniques (X-ray Topography and X-ray Goniometry)." Materia Japan 35, nr 9 (1996): 999–1005. http://dx.doi.org/10.2320/materia.35.999.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Mammadli, P. R., i D. M. Babanly. "POWDER X-RAY DIFFRACTION STUDY OF THE Cu3SbS3-CuI SYSTEM". Chemical Problems 21, nr 1 (2023): 57–63. http://dx.doi.org/10.32737/2221-8688-2023-1-57-63.

Pełny tekst źródła
Streszczenie:
The nature of phase equilibria in the Cu3SbS3-CuI binary system over the entire concentration range were studied by means of the powder X-ray diffraction analysis (PXRD) for the first time at room temperature. It was found that the sample containing 66.7 mol.% CuI composed of a single phase and has a powder diffraction pattern completely different from the constituent phases of the system under study. The crystal lattice type and parameters, that were determined on the basis of the X-ray diffraction pattern of this sample using the TOPAS 4.2 and EVA computer programs are fully consistent with the literature data of the Cu5SbS3I2 four-component compound. The copper (I) iodide rich samples of the system consist of a two-phase mixture of Cu5SbS3I2 and CuI phases. However, the system is unstable in the Cu5SbS3I2-Cu3SbS3 composition range. In this concentration interval, the system is characterized by complex physico-chemical interaction of the initial components.
Style APA, Harvard, Vancouver, ISO itp.
23

Popović, Stanko, i Željko Skoko. "X-ray diffraction broadening analysis". Macedonian Journal of Chemistry and Chemical Engineering 34, nr 1 (30.03.2015): 39. http://dx.doi.org/10.20450/mjcce.2015.642.

Pełny tekst źródła
Streszczenie:
The microstructure is very important in research aimed to the development of new materials. The microstructural parameters, crystallite size, crystallite size distribution, crystallite strain, dislocation density and stacking fault probability, play a major role in physical and chemical properties of the material. These parameters can be determined by a proper analysis of X-ray diffraction line profile broadening. The observed XRD line profile of the studied sample, <em>h</em>(<em>ε</em>), is the convolution of the instrumental profile, <em>g</em>(<em>ε</em>), inherent in diffraction, and pure diffraction profile, <em>f</em>(<em>ε</em>), caused by small crystallite (coherent domain) sizes, by faultings in the sequence of the crystal lattice planes, and by the strains in the crystallites. That is, <em>f</em>(<em>ε</em>) is the convolution of the crystallite size/faulting profile, <em>p</em>(<em>ε</em>), and the strain profile, <em>s</em>(<em>ε</em>). The derivation of <em>f</em>(<em>ε</em>) can be performed from the measured <em>h</em>(<em>ε</em>) and <em>g</em>(<em>ε</em>) by the Fourier transform method, usually referred to as the Stokes method. That method does not require assumptions in the mathematical description of <em>h</em>(<em>ε</em>) and <em>g</em>(<em>ε</em>). The analysis of <em>f</em>(<em>ε</em>) can be done by the Warren-Averbach method, which is applied to the Fourier coefficients obtained by the deconvolution. On the other hand, simplified methods (which may bypass the deconvolution) based on integral widths may be used, especially in studies where a good relative accuracy suffices. In order to obtain the relation among integral widths of <em>f</em>(<em>ε</em>), <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>), one assumes bell-shaped functions for <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>). These functions are routinely used in the profile fitting of the XRD pattern and in the Rietveld refinement of the crystal structure. The derived crystallite size and strain parameters depend on the assumptions for the profiles <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>). Integral width methods overestimate both strain and crystallite size parameters in comparison to the Warren-Averbach-Stokes method. Also, the crystallite size parameter is more dependent on the accuracy, with which the profile tails are measured and how they are truncated, than it is the strain parameter. The integral width also depends on the background level error of the pure diffraction profile. The steps and precautions, which are necessary in order to minimize the errors, are suggested through simple examples. The values of the crystallite size and strain parameters, obtained from integral widths derived by the Stokes deconvolution, are compared with those which followed from the Warren-Averbach treatment of broadening. Recent approaches in derivation of microstructure are also mentioned in short.
Style APA, Harvard, Vancouver, ISO itp.
24

LEE, Hyeon Jun, i Ji Young JO. "Time-Resolved X-ray Diffraction". Physics and High Technology 24, nr 9 (30.09.2015): 6. http://dx.doi.org/10.3938/phit.24.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Cox, D. E. "Synchrotron X-Ray Powder Diffraction". MRS Bulletin 12, nr 1 (luty 1987): 16–20. http://dx.doi.org/10.1557/s088376940006869x.

Pełny tekst źródła
Streszczenie:
X-ray powder diffraction is one of the most widely used techniques by scientists engaged in the synthesis, analysis, and characterization of solids. It is estimated that there are now about 25,000 users throughout the world, of which about one third are in the United States. Any single-phase polycrystalline material gives an x-ray pattern which can be regarded as a unique “fingerprint,” and modern automated search-and-match techniques used in conjunction with the Powder Diffraction File (maintained by the International Center for Diffraction Data, Swarthmore, PA) allow routine analysis of samples in minutes. From an x-ray pattern of good quality it is possible to determine unit cell parameters with high accuracy and impurity concentrations of 1-5%, so that powder techniques are extremely valuable in phase equilibrium studies and residual stress measurements, for example. In addition, a detailed analysis of line shapes gives information about physical properties such as the size and shape of the individual crystallites, microscopic strain, and stacking disorder.In the early days of crystallography many simple (and some not-so-simple) structures were solved from x-ray powder diffraction patterns, but the obvious limitations to the number of individual reflection intensities which can be estimated and the increasing sophistication of single-crystal techniques resulted in a decline in the importance of this application in the 1950s and 1960s.
Style APA, Harvard, Vancouver, ISO itp.
26

Chen, Haydn. "Surface/Interface X-Ray Diffraction". Materials Science Forum 189-190 (lipiec 1995): 95–106. http://dx.doi.org/10.4028/www.scientific.net/msf.189-190.95.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Garlick, George Donald. "Reflections on X-Ray Diffraction". Journal of Geoscience Education 45, nr 4 (wrzesień 1997): 317–21. http://dx.doi.org/10.5408/1089-9995-45.4.317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Matsuo, Munetsugu, i Masayuki Okamoto. "Energy dispersive X-ray diffraction." Bulletin of the Japan Institute of Metals 28, nr 3 (1989): 208–12. http://dx.doi.org/10.2320/materia1962.28.208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Chapman, D., W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli i D. Sayers. "Diffraction enhanced x-ray imaging". Physics in Medicine and Biology 42, nr 11 (1.11.1997): 2015–25. http://dx.doi.org/10.1088/0031-9155/42/11/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Höche, H. R., O. Brümmer i J. Nieber. "Extremely skew X-ray diffraction". Acta Crystallographica Section A Foundations of Crystallography 42, nr 6 (1.11.1986): 585–87. http://dx.doi.org/10.1107/s0108767386098707.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Cao, Jianshu, i Kent R. Wilson. "Ultrafast X-ray Diffraction Theory". Journal of Physical Chemistry A 102, nr 47 (listopad 1998): 9523–30. http://dx.doi.org/10.1021/jp982054p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Miao, Jianwei, Richard L. Sandberg i Changyong Song. "Coherent X-Ray Diffraction Imaging". IEEE Journal of Selected Topics in Quantum Electronics 18, nr 1 (styczeń 2012): 399–410. http://dx.doi.org/10.1109/jstqe.2011.2157306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yamane, H., T. Sakamoto, S. I. Kubota i M. Shimada. "Gd3GaO6by X-ray powder diffraction". Acta Crystallographica Section C Crystal Structure Communications 55, nr 4 (15.04.1999): 479–81. http://dx.doi.org/10.1107/s0108270198016096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

HONDO, TAKEO. "X-ray diffraction in glaciology." Journal of the Japanese Society of Snow and Ice 51, nr 3 (1989): 184–94. http://dx.doi.org/10.5331/seppyo.51.184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Palancher, H., S. Bos, J. F. Bérar, I. Margiolaki i J. L. Hodeau. "X-ray resonant powder diffraction". European Physical Journal Special Topics 208, nr 1 (czerwiec 2012): 275–89. http://dx.doi.org/10.1140/epjst/e2012-01624-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Woerner, Michael. "Femtosecond X-ray powder diffraction". Acta Crystallographica Section A Foundations and Advances 71, a1 (23.08.2015): s150. http://dx.doi.org/10.1107/s205327331509779x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wark, Justin. "Time-resolved X-ray diffraction". Contemporary Physics 37, nr 3 (maj 1996): 205–18. http://dx.doi.org/10.1080/00107519608217528.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Hansford, G. M. "Phase-targeted X-ray diffraction". Journal of Applied Crystallography 49, nr 5 (1.09.2016): 1561–71. http://dx.doi.org/10.1107/s1600576716011936.

Pełny tekst źródła
Streszczenie:
A powder X-ray diffraction (XRD) method to enhance the signal of a specific crystalline phase within a mixture is presented for the first time. Specificity to the targeted phase relies on finding coincidences in the ratios of crystal d spacings and the ratios of elemental characteristic X-ray energies. Such coincidences can be exploited so that the two crystal planes diffract through the same scattering angle at two different X-ray energies. An energy-resolving detector placed at the appropriate scattering angle will detect a significantly enhanced signal at these energies if the target mineral or phase is present in the sample. When implemented using high scattering angles, for example 2θ > 150°, the method is tolerant to sample morphology and distance on the scale of ∼2 mm. The principle of the method is demonstrated experimentally using Pd Lα1 and Pd Lβ1 emission lines to enhance the diffraction signal of quartz. Both a pure quartz powder pellet and an unprepared mudstone rock specimen are used to test and develop the phase-targeted method. The technique is further demonstrated in the sensitive detection of retained austenite in steel samples using a combination of In Lβ1 and Ti Kβ emission lines. For both these examples it is also shown how the use of an attenuating foil, with an absorption edge close to and above the higher-energy characteristic X-ray line, can serve to isolate to some degree the coincidence signals from other fluorescence and diffraction peaks in the detected spectrum. The phase-targeted XRD technique is suitable for implementation using low-cost off-the-shelf components in a handheld or in-line instrument format.
Style APA, Harvard, Vancouver, ISO itp.
39

Palmer, D. Jason. "X-ray diffraction strikes gold". Materials Today 10, nr 12 (grudzień 2007): 9. http://dx.doi.org/10.1016/s1369-7021(07)70293-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Sadeghi, Mohammad-Ali, George V. Chilingarian i Teh Fu Yen. "X-Ray Diffraction of Asphaltenes". Energy Sources 8, nr 2-3 (styczeń 1986): 99–123. http://dx.doi.org/10.1080/00908318608946045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Stanjek, H., i W. Häusler. "Basics of X-ray Diffraction". Hyperfine Interactions 154, nr 1-4 (2004): 107–19. http://dx.doi.org/10.1023/b:hype.0000032028.60546.38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ono, Yasuhiro, Kazuya Takayama i Tsuyoshi Kajitani. "X-Ray Diffraction Study ofLaBSiO5". Journal of the Physical Society of Japan 65, nr 10 (15.10.1996): 3224–28. http://dx.doi.org/10.1143/jpsj.65.3224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Hajdu, Janos. "Single-molecule X-ray diffraction". Current Opinion in Structural Biology 10, nr 5 (październik 2000): 569–73. http://dx.doi.org/10.1016/s0959-440x(00)00133-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Stepanov, S. A., E. A. Kondrashkina i D. V. Novikov. "X-ray surface back diffraction". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 301, nr 2 (marzec 1991): 350–57. http://dx.doi.org/10.1016/0168-9002(91)90478-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lovesey, Stephen W. "X-ray diffraction by CeB6". Journal of Physics: Condensed Matter 14, nr 17 (18.04.2002): 4415–23. http://dx.doi.org/10.1088/0953-8984/14/17/314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Balyan, Minas K. "X-ray nonlinear Bragg diffraction". Journal of Nanophotonics 11, nr 1 (24.01.2017): 016003. http://dx.doi.org/10.1117/1.jnp.11.016003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Grant, J. A., M. J. Morgan, J. R. Davis, D. R. Davies i P. Wells. "51726 X-ray diffraction microtomography". NDT & E International 27, nr 2 (kwiecień 1994): 104. http://dx.doi.org/10.1016/0963-8695(94)90351-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Attfield, J. P. "Resonant Powder X-Ray Diffraction". Materials Science Forum 228-231 (lipiec 1996): 201–6. http://dx.doi.org/10.4028/www.scientific.net/msf.228-231.201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

MORISHIGE, Kunimitsu. "X-ray diffraction of surfaces." Hyomen Kagaku 7, nr 1 (1986): 52–60. http://dx.doi.org/10.1380/jsssj.7.52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Allais, C., G. Keller, P. Lesieur, M. Ollivon i F. Artzner. "X-ray diffraction/Calorimetry coupling". Journal of Thermal Analysis and Calorimetry 74, nr 3 (2003): 723–28. http://dx.doi.org/10.1023/b:jtan.0000011004.45180.0a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii