Gotowa bibliografia na temat „X-Pinch”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „X-Pinch”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "X-Pinch"
Pikuz, S. A., T. A. Shelkovenko i D. A. Hammer. "X-pinch. Part I". Plasma Physics Reports 41, nr 4 (kwiecień 2015): 291–342. http://dx.doi.org/10.1134/s1063780x15040054.
Pełny tekst źródłaPikuz, S. A., T. A. Shelkovenko i D. A. Hammer. "X-pinch. Part II". Plasma Physics Reports 41, nr 6 (czerwiec 2015): 445–91. http://dx.doi.org/10.1134/s1063780x15060045.
Pełny tekst źródłaRiordan, James R. "X-pinch flash photography". Physics Today 54, nr 12 (grudzień 2001): 9. http://dx.doi.org/10.1063/1.4796251.
Pełny tekst źródłaTong, Zhao, Zou Xiao-Bing, Zhang Ran i Wang Xin-Xin. "X-ray backlighting of two-wire Z-pinch plasma using X-pinch". Chinese Physics B 19, nr 7 (lipiec 2010): 075205. http://dx.doi.org/10.1088/1674-1056/19/7/075205.
Pełny tekst źródłaLebedev, S. V., F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, M. Zakaullah, S. A. Pikuz, T. A. Shelkovenko i D. A. Hammer. "X-ray backlighting of wire array Z-pinch implosions using X pinch". Review of Scientific Instruments 72, nr 1 (styczeń 2001): 671–73. http://dx.doi.org/10.1063/1.1315647.
Pełny tekst źródłaWu, J., L. Wang, A. Qiu, J. Han, M. Li, T. Lei, P. Cong, M. Qiu, H. Yang i M. Lv. "Experimental investigations of X-pinch backlighters on QiangGuang-1 generator". Laser and Particle Beams 29, nr 2 (22.03.2011): 155–60. http://dx.doi.org/10.1017/s0263034611000024.
Pełny tekst źródłaZhao, Shen, Xinlei Zhu, Ran Zhang, Haiyun Luo, Xiaobing Zou i Xinxin Wang. "Current division between two paralleled X-pinches". Laser and Particle Beams 32, nr 3 (15.07.2014): 437–42. http://dx.doi.org/10.1017/s0263034614000354.
Pełny tekst źródłaSkoulakis, A., G. Koundourakis, A. Ciardi, E. Kaselouris, I. Fitilis, J. Chatzakis, M. Bakarezos i in. "High performance simulations of a single X-pinch". Plasma Physics and Controlled Fusion 64, nr 2 (30.12.2021): 025003. http://dx.doi.org/10.1088/1361-6587/ac3deb.
Pełny tekst źródłaValdivia, M. P., G. W. Collins IV, F. Conti i F. N. Beg. "Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics". Plasma Physics and Controlled Fusion 64, nr 3 (28.01.2022): 035011. http://dx.doi.org/10.1088/1361-6587/ac4b95.
Pełny tekst źródłaShelkovenko, T. A., S. A. Pikuz, R. D. McBride, P. F. Knapp, G. Wilhelm, D. B. Sinars, D. A. Hammer i N. Yu Orlov. "Symmetric multilayer megampere X-pinch". Plasma Physics Reports 36, nr 1 (styczeń 2010): 50–66. http://dx.doi.org/10.1134/s1063780x10010046.
Pełny tekst źródłaRozprawy doktorskie na temat "X-Pinch"
Beg, Farhat Nadeem. "X-ray and optical studies of z-pinch plasmas". Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307452.
Pełny tekst źródłaNave, Gillian. "Soft X-ray spectroscopy of gas-puff z-pinch". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38116.
Pełny tekst źródłaChallis, C. D. "X-ray observations of an annular gas-puff z-pinch". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37962.
Pełny tekst źródłaHammel, Benjamin Diethelm. "Study Of Intense Energetic Electron Beams In X-Pinch Experiments". Thesis, University of Nevada, Reno, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10161337.
Pełny tekst źródłaHigh-energy electron beams, with electron kinetic energies (∼1 MeV) much greater than the surrounding plasma temperature (<1 keV), are a common feature in Z-pinch pulsed power experiments. Their existence is indicated by non-thermal spectral signatures, such as high-energy Bremsstrahlung photons from the anode hardware and characteristic X-ray emission not representative of the pinch "hot-spot" temperatures. Despite their regular occurrence, the properties of these beams (kinetic energy, current) are not well known.
This dissertation describes an experimental study of X-pinch generated high-intensity electron beams, performed on the 1 MA pulsed power generator at the Nevada Terawatt Facility, and the feasibility of a novel method for inferring the total kinetic energy in the beam, through time-resolved measurements of the beam-induced shock that propagates through the anode.
Badaye, Massoud. "Investigation and improvement of a Z-pinch plasma X-ray source". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39468.
Pełny tekst źródłaIt is shown that the system can be improved considerably by modifying the gas puff design. Three gas puffs developed in this work are optimized for x-ray emission from argon, krypton, and neon gases. In the optimized conditions the output x-ray energies of 0.5 J from Ar-K shell, 2 J from Kr-L shell, and more than 2 J from Ne-K shell are obtained.
The implosion dynamics is studied with different gases under varying conditions. The average implosion velocity, the final pinch diameter, the current waveform, and the emitted x-ray energy are measured. The pinched plasma parameters such as temperature, density, and the average ionic state are estimated using the corona model calculations, and the pinched current waveforms. The spectrum of the neon radiation clearly shows the characteristic H-like and He-like lines. The neon spectrum is used to estimate the plasma temperature.
The dynamic performance of the magnetically induced compression gas puff is studied carefully. A special ion probe was developed for studying the dynamic parameters of the gas puff. The ion measurements with the probe have led to the characterization of the gas puff performance under varying operating conditions. It is shown that ions are generated through photoionization of the injected gas by the UV light emitted from the inside of the gas puff plenum through the nozzle. It is found that the jet velocity and ion density can be in excess of $3 times10 sp3$ m/s and $2 times10 sp{14}$ cm$ sp{-3}$, respectively.
A theoretical model is developed to simulate the plasma evolution in the gas puff. This model uses the magneto hydrodynamic (MHD) equations solved by the finite difference method. The magnetic field in the vacuum is calculated using the Laplace equation and self consistent boundary conditions. The model predicts the evolution of plasma variables such as density, temperature, velocity, and magnetic field. It also calculates the variation of the total mass flow rate, optical output, and the ionic signal. The simulation results are shown to compare favourably with the experimental measurements.
ROSCH, RUDOLF. "Etude de l'emission x dans les plasmas d'aluminium de type z-pinch". Paris 11, 1999. http://www.theses.fr/1999PA112020.
Pełny tekst źródłaBonomo, Federica. "Experimental Measurements of Soft X-Ray Emissivity Distribution and Electron Temperature Profile in Reversed Field Pinch Plasmas". Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425153.
Pełny tekst źródłaDelaunay, Alice. "Polymorphisme (β-γ-δ) et fusion de l’étain sous sollicitations dynamiques : analyses macroscopique et cristallographique". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0028.
Pełny tekst źródłaPolymorphic transitions and melting of tin were studied under dynamic loading by coupling velocimetry and X-ray diffraction in order to determine transition pressures and to identify phases in presence. In the literature, different onset pressures were measured for the β-γtransition between static and dynamic loading, and even for one same loading type. Thus, further work is needed to characterize the formation conditions of the γ phase: in-situ X-ray diffraction provides data on microstructure evolution in time, on phases in presence, on orientational relationship and on the kinetics of the transformation. These data can be used totest theoretical hypotheses on the transition mechanisms, kinetics, and possible twinning. Previous impact experiments were performed at CEA Gramat and at Advanced Photon Source(APS) facilities, on single crystal tin of (110) orientation with a launcher and a short X-raysource. The present investigation is a continuation of that exploratory study based on an optimized configuration to highlight the γ phase from three orientations of the β phase: (110),(100) and (001). Shock experiments were performed at CEA Gramat with an X-Pinch generator to obtain X-ray diffraction patterns both under shock compression and in release. For each orientation, varying the time delay between the shock and the X-ray probe allowed studying the evolution of diffraction patterns directly correlated with microstructural modifications and transition kinetics. Complementary shock experiments were performed at the synchrotron facilities of APS to probe a time-resolved evolution of the sample for each shot, which provided additional results. These data enable to propose kinetic hypothesis for the transition between β and γ. Furthermore they are consistent with the theoretical mechanism which was validated in quasi-static anvil cell experiments recently. Other direct and reverse transitions between β, γ and δ phases as well as melting on release were observed according to the applied pressure. All these results build up a database to improve multiphaseequations of state used in simulations of dynamic processes
Bavay, Mathias. "Compression de flux magnétique dans le régime sub-microseconde pour l'obtention de hautes pressions et de rayonnement X intense". Paris 11, 2002. http://www.theses.fr/2002PA112100.
Pełny tekst źródłaIn order to study the feasibility of creating an intense X ray source for France, the Centre d'Études de Gramat (CEG) is investigating several technologies. The Syrinx project is looking at the potential of High Pulse Power technologies for Isentropic Compression Experiments, High Temperatures Hohlraums and Radiation Hardening (X rays between 1 eV and 10 eV radiated by a Z-pinch). Then it is necessary to provide a power amplification stage allowing electrical currents of the order of 10 MA with a hundred nanoseconds rise rime to be delivered to the load. Usually, generators use pulse forming lines or plasma opening switches. Magnetic Flux Compression, another power amplification possibility, is studied in this dissertation. It has enabled the compression of the 100 ns pulse of the Z machine (Sandia National Laboratories) into a 40 ns pulse and the compression of the 1 ms pulse of the ECF generator (CEG) into a 100 ns pulse. This technology bas the advantage of a characteristic implosion time less than a micro second avoiding many of the problems the explosive driven flux compression ran into. This research work consisted initially in finding the right parameters for several codes (circuits codes, plasma codes. . . ) in order to adapt them to the Flux Compression. These numerical tools have then been used to design experiments on Z and ECF. These experiments have reached 5 Mbar with shock and more than 2 Mbar in isentropic compression as well as 110 eV in a hohlraum. Insights gleaned from the interpretation of the shots have been compared to our understanding of the power amplification system and of the loads. Finally, this allows us to improve our numerical tools and to optimize the Flux Compression concept. The work which has been done should lead to the extrapolation of the concept to an X ray generator of the 60 MA class
Pandarus, Valerica. "Complexes pinceurs de type diphosphinito (POCOP) de Ni(II) / Ni(III)". Thèse, 2008. http://hdl.handle.net/1866/7845.
Pełny tekst źródłaKsiążki na temat "X-Pinch"
Books, Bw Recipe. Pinch of Patience a Dash of Kindness: Funny 6 X 9 Inch Blank Recipe Book 120 Pages. Independently Published, 2019.
Znajdź pełny tekst źródłaDrake, Gwasg Addysgol. Prosiect X: Band 1 Pinc - Fy Nghartref. Drake Educational Associates Limted, 2021.
Znajdź pełny tekst źródłaNotebook, PinchyZv, i PinchyZv Notebook. Notebook: Pinchy Pinchy , Journal for Writing, College Ruled Size 6 X 9 , 110 Pages. Independently Published, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "X-Pinch"
Robledo-Martinez, A., R. Aliaga-Rossel, I. H. Mitchell, J. P. Chittenden, A. E. Dangor i M. G. Haines. "Hard X-Ray Diagnostic of Z-Pinch Discharges". W Plasma Physics, 491–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_58.
Pełny tekst źródłaDasgupta, A., R. W. Clark, J. Davis i J. G. Giuliani. "X-ray Spectroscopy of Astrophysical and Laboratory Z-pinch Plasmas". W Recent Advances in Spectroscopy, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10322-3_2.
Pełny tekst źródłaBystritskii, Vitaly, Frank J. Wessel, Norman Rostoker i Hafiz Rahman. "Novel Staged Z-Pinch Concept as Super Radiant X-Ray Source for ICF". W Current Trends in International Fusion Research, 347–64. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5867-5_22.
Pełny tekst źródłaFidelman, Peggy, i Peter Stone. "The Chin Pinch: A Case Study in Skill Learning on a Legged Robot". W RoboCup 2006: Robot Soccer World Cup X, 59–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74024-7_6.
Pełny tekst źródła"Divergence measurement of Ne-like Ar soft X-ray laser beam generated by capillary Z-pinch discharge". W X-Ray Lasers 2004, 189–92. CRC Press, 2005. http://dx.doi.org/10.1201/9781482269208-39.
Pełny tekst źródłaWakatani, Masahiro. "The Mhd Equilibrium Of A Toroidal Plasma In Three-Dimensional Geometry". W Stellarator and Heliotron Devices, 101–47. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195078312.003.0004.
Pełny tekst źródłaMalpas, R. "Foreword to the first edition". W Pinch Analysis and Process Integration, xiii. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50002-x.
Pełny tekst źródła"Notation". W Pinch Analysis and Process Integration, 381–82. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50016-x.
Pełny tekst źródła"Index". W Pinch Analysis for Energy and Carbon Footprint Reduction, 537–48. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102536-9.09994-x.
Pełny tekst źródłaBandyopadhyay, Santanu. "Design of renewable energy systems incorporating uncertainties through pinch analysis". W Computer Aided Chemical Engineering, 1994–98. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-54298-4.50177-x.
Pełny tekst źródłaStreszczenia konferencji na temat "X-Pinch"
Yao, Y., J. Struska i S. Bland. "Portable x-pinch driver development for dense plasma measurements". W 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626902.
Pełny tekst źródłaLi, J., Y. Yang, H. Liu, K. Deng, J. Yuan, W. Xie i Q. Wu. "Development of X-Pinch based X-ray imaging technique for diagnosis of transient processes". W 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626845.
Pełny tekst źródłaPikuz, S. A., P. A. Gourdain, T. A. Shelkovenko, I. N. Tilikin, J. B. Greenly, L. Atoyan i D. A. Hammer. "Magnetized hybrid X-pinch". W 9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904793.
Pełny tekst źródłaZou, X. B., X. X. Wang i Rui Liu. "X-ray emission from an X-pinch". W 2009 IEEE 36th International Conference on Plasma Science (ICOPS). IEEE, 2009. http://dx.doi.org/10.1109/plasma.2009.5227701.
Pełny tekst źródłaZhang, Ran, Tong Zhao, Xiaobing Zou, Xinlei Zhu i Xinxin Wang. "X-pinch applications in X-ray radiography and design of compact table-top X-pinch device". W 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958302.
Pełny tekst źródłaShelkovenko, Tatiana A., Sergey A. Pikuz, Adam D. Cahill, Jack T. Blanchard, David A. Hammer i Daniel B. Sinars. "X pinch with conical electrodes". W 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534347.
Pełny tekst źródłaBlesener, I. C., P. U. Duselis, B. R. Kusse, M. D. Mitchell, S. A. Pikuz i T. A. Shelkovenko. "Positive polarity x-pinch operation". W The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707152.
Pełny tekst źródłaPikuz, Sergei A., ByungMoo Song, Tatyana A. Shelkovenko, Katherine M. Chandler, Marc D. Mitchell i David A. Hammer. "X-pinch source size measurements". W Optical Science and Technology, SPIE's 48th Annual Meeting, redaktorzy George A. Kyrala, Jean-Claude J. Gauthier, Carolyn A. MacDonald i Ali M. Khounsary. SPIE, 2004. http://dx.doi.org/10.1117/12.508752.
Pełny tekst źródłaPikuz, Sergey A., Tatiana A. Shelkovenko, Cad L. Hoyt, Adam D. Cahill, David A. Hammer i Ivan N. Tilikin. "X-ray absorption spectroscopy of X-pinch plasmas". W 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6635137.
Pełny tekst źródłaKalantar, D. H., P. A. Hammer, N. Qi i K. C. Mittal. "Dense X-pinch plasmas for X-ray microlithography". W 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110563.
Pełny tekst źródłaRaporty organizacyjne na temat "X-Pinch"
Sanford, T. W. L., G. O. Allshouse i B. M. Marder. X-ray power increase from symmetrized wire-array z-pinch implosions. Office of Scientific and Technical Information (OSTI), sierpień 1996. http://dx.doi.org/10.2172/369656.
Pełny tekst źródłaHammer, David A. Spectroscopic Determination of the Magnetic Fields in Exploding Wire and X-pinch Plasmas. Office of Scientific and Technical Information (OSTI), grudzień 2013. http://dx.doi.org/10.2172/1111120.
Pełny tekst źródłaChartas, G., i S. Hokin. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch. Office of Scientific and Technical Information (OSTI), wrzesień 1991. http://dx.doi.org/10.2172/5218161.
Pełny tekst źródłaBeg, Farhat N. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch. Office of Scientific and Technical Information (OSTI), sierpień 2013. http://dx.doi.org/10.2172/1089941.
Pełny tekst źródłaSanford, T. W. L., T. J. Nash i B. M. Marder. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays. Office of Scientific and Technical Information (OSTI), marzec 1996. http://dx.doi.org/10.2172/211368.
Pełny tekst źródłaDavid Hammer. Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas. Office of Scientific and Technical Information (OSTI), grudzień 2008. http://dx.doi.org/10.2172/943298.
Pełny tekst źródłaBOWERS, RICHARD, GORDON A. CHANDLER, DAVID E. HEBRON, RAMON J. LEEPER, WALTER MATUSLKA, RAYMOND CECIL MOCK, THOMAS J. NASH i in. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies. Office of Scientific and Technical Information (OSTI), listopad 1999. http://dx.doi.org/10.2172/14927.
Pełny tekst źródłaCordova, Steve Ray, Dean Curtis Rovang, Salvador Portillo, Bryan Velten Oliver, Nichelle Lee Bruner i Derek Raymond Ziska. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/920805.
Pełny tekst źródłaHammer, David. X-Ray Spectroscopic Studies of X-Pinch Plasmas with 3-5 Picosecond Resolution: A Quest for Clear Experimental Evidence for Radiative Collapse in the X-ray Spectra (Final Report). Office of Scientific and Technical Information (OSTI), grudzień 2021. http://dx.doi.org/10.2172/1837836.
Pełny tekst źródłaBennett, Nichelle. A hybrid-kinetic simulation tool for non-thermal warm x-ray z-pinch sources, with gas-puff and wire array exemplars. Office of Scientific and Technical Information (OSTI), październik 2024. https://doi.org/10.2172/2480192.
Pełny tekst źródła