Gotowa bibliografia na temat „Wind turbines- Structural engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wind turbines- Structural engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wind turbines- Structural engineering"
Roddier, Dominique, i Joshua Weinstein. "Floating Wind Turbines". Mechanical Engineering 132, nr 04 (1.04.2010): 28–32. http://dx.doi.org/10.1115/1.2010-apr-2.
Pełny tekst źródłaHua, Xugang, Qingshen Meng, Bei Chen i Zili Zhang. "Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine". Advances in Structural Engineering 23, nr 14 (15.06.2020): 3037–47. http://dx.doi.org/10.1177/1369433220927260.
Pełny tekst źródłaAbreu, Rafael, Daniel Peter i Christine Thomas. "Reduction of wind-turbine-generated seismic noise with structural measures". Wind Energy Science 7, nr 3 (20.06.2022): 1227–39. http://dx.doi.org/10.5194/wes-7-1227-2022.
Pełny tekst źródłaAsim, Taimoor, Sheikh Zahidul Islam, Arman Hemmati i Muhammad Saif Ullah Khalid. "A Review of Recent Advancements in Offshore Wind Turbine Technology". Energies 15, nr 2 (14.01.2022): 579. http://dx.doi.org/10.3390/en15020579.
Pełny tekst źródłaLi, Jiawen, Jingyu Bian, Yuxiang Ma i Yichen Jiang. "Impact of Typhoons on Floating Offshore Wind Turbines: A Case Study of Typhoon Mangkhut". Journal of Marine Science and Engineering 9, nr 5 (17.05.2021): 543. http://dx.doi.org/10.3390/jmse9050543.
Pełny tekst źródłaGong, Sen, Kai Pan, Hua Yang i Junwei Yang. "Experimental Study on the Effect of the Blade Tip Distance on the Power and the Wake Recovery with Small Multi-Rotor Wind Turbines". Journal of Marine Science and Engineering 11, nr 5 (22.04.2023): 891. http://dx.doi.org/10.3390/jmse11050891.
Pełny tekst źródłaMoll, Jochen. "Damage detection in grouted connections using electromechanical impedance spectroscopy". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, nr 3 (26.03.2018): 947–50. http://dx.doi.org/10.1177/0954406218764226.
Pełny tekst źródłaXia, Yaping, Minghui Yin, Ruiyu Li, De Liu i Yun Zou. "Integrated structure and maximum power point tracking control design for wind turbines based on degree of controllability". Journal of Vibration and Control 25, nr 2 (26.06.2018): 397–407. http://dx.doi.org/10.1177/1077546318783363.
Pełny tekst źródłaManolas, Dimitris I., Panagiotis K. Chaviaropoulos i Vasilis A. Riziotis. "Assessment of Vortex Induced Vibrations on wind turbines". Journal of Physics: Conference Series 2257, nr 1 (1.04.2022): 012011. http://dx.doi.org/10.1088/1742-6596/2257/1/012011.
Pełny tekst źródłaShaler, Kelsey, Amy N. Robertson i Jason Jonkman. "Sensitivity analysis of the effect of wind and wake characteristics on wind turbine loads in a small wind farm". Wind Energy Science 8, nr 1 (4.01.2023): 25–40. http://dx.doi.org/10.5194/wes-8-25-2023.
Pełny tekst źródłaRozprawy doktorskie na temat "Wind turbines- Structural engineering"
Fégeant, Olivier. "Noise from wind turbines". Doctoral thesis, KTH, Byggnader och installationer, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3100.
Pełny tekst źródłaQC 20100616
Nguyen-Sy, Lam. "The theoretical modelling of circular shallow foundation for offshore wind turbines". Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:fa4000fb-8de6-4093-b528-3e60d774dea0.
Pełny tekst źródłaFolster, Kaylee. "Influence of geometry on the dynamic behaviour of steel tubular towers for onshore wind turbines". Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25282.
Pełny tekst źródłaGwon, Tae gyun. "Structural Analyses of Wind Turbine Tower for 3 kW Horizontal Axis Wind Turbine". DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/600.
Pełny tekst źródłaMoss, Andrew M. "Analysis of a Gravity Hinge System for Wind Turbines". Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1624479290234317.
Pełny tekst źródłaRastegar, Damoon. "Modification of Aeroelastic Model for Vertical Axes Wind Turbines". Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3388.
Pełny tekst źródłaDi, Pietro Joshua (Joshua Michael). "Structural analysis and design of floating wind turbine systems". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50575.
Pełny tekst źródłaIncludes bibliographical references (p. 139-140).
As oil supply rates approach potential maximums and the global detrimental effects of carbon emitting energy technology are becoming more comprehensively understood, the world is searching for environmentally benign energy technology which can be reliably and economically harvested. Deep water offshore wind is a vast, reliable and potentially economical energy source which remains globally untapped. In order to harvest this resource, potential floating turbine systems must be analyzed and designed for economic production and deployment, reliable operation, and adequate service life. The Laboratory of Ship and Platform Flow (LSPF) has created trusted hydrodynamic modeling software used to perform a Pareto Optimization which resulted in an optimized Floating Wind Turbine (FWT) design which is a Tension Leg Platform (TLP); hereto called MIT TLP-1. This thesis details the structural design aspects of Floating Wind Turbines (FWT) in a rationally based optimization approach for incorporation into existing LSPF hydrodynamic optimization approaches. A steel structural design is created based on the geometry and loading of the MIT TLP-1 for a 10m significant wave height. The design is based on similar system analysis, classic linear structural theory, American Bureau of Shipping rules and American Petroleum Institute recommended practices. The design is verified using Finite Element Analysis (FEA). The results of this work show that the MIT TLP-1 design is technically feasible from a structural integrity, performance and producibility standpoint.
by Joshua Di Pietro.
S.M.in Mechanical Engineering and Naval Architecture and Marine Engineering
Al-Khudairi, Othman. "Structural performance of horizontal axis wind turbine blade". Thesis, Kingston University, 2014. http://eprints.kingston.ac.uk/32197/.
Pełny tekst źródłaAlhajali, Abdallah. "Analysis of existing offshore structures considering structural damage to investigate a vertical axis wind tower". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Znajdź pełny tekst źródłaCantoni, Lorenzo. "Load Control Aerodynamics in Offshore Wind Turbines". Thesis, KTH, Kraft- och värmeteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291417.
Pełny tekst źródłaPå grund av ökningen av rotorstorleken hos horisontella vindturbiner (HAWT) under de senaste 25 åren, en design som har uppstod för att uppnå högre effekt, måste alla vindkraftkomponenter och blad stå emot högre strukturella belastningar. Detta uppskalningsproblem kan lösas genom att använda metoder som kan minska aerodynamiska belastningar som rotorn måste tåla, antingen med passiva eller aktiva styrlösningar. Dessa kontrollanordningar och tekniker kan minska utmattningsbelastningen på bladen med upp till 40 % och därför behövs mindre underhåll, vilket resulterar i viktiga besparingar för vindkraftsägaren. Detta projekt består av en studie av lastkontrolltekniker för havsbaserade vindkraftverk ur en aerodynamisk och aeroelastisk synvinkel, i syfte att bedöma en kostnadseffektiv, robust och pålitlig lösning som kan fungera underhållsfri i tuffa miljöer. Den första delen av denna studie involverar 2D- och 3D-aerodynamiska och aeroelastiska simuleringar för att validera beräkningsmodellen med experimentella data och för att analysera interaktionen mellan fluiden och strukturen. Den andra delen av denna studie är en bedömning av de ojämna aerodynamiska belastningarna som produceras av ett vindkast över bladen och för att verifiera hur en bakkantklaff skulle påverka de aerodynamiska styrparametrarna för det valda vindturbinbladet.
Książki na temat "Wind turbines- Structural engineering"
Borri, Claudio, C. C. Baniotopoulos i Theodore Stathopoulos. Environmental wind engineering and design of wind energy structures. Wien: Springer, 2011.
Znajdź pełny tekst źródłaM, Mayer Rayner, red. Design of composite structures against fatigue: Applications to wind turbine blades. Bury St Edmunds: MEP, 1996.
Znajdź pełny tekst źródłaMayes, R. Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2: Proceedings of the 30th IMAC, A Conference on Structural Dynamics, 2012. New York, NY: Springer New York, 2012.
Znajdź pełny tekst źródłaHau, E. WEGA Large Wind Turbines. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Znajdź pełny tekst źródłaTamura, Yukio, i Ahsan Kareem, red. Advanced Structural Wind Engineering. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54337-4.
Pełny tekst źródłaHansen, Martin O. L. Aerodynamics of wind turbines. Wyd. 2. London: Earthscan, 2008.
Znajdź pełny tekst źródła1944-, Stoddard Forrest S., red. Wind turbine engineering design. New York: Van Nostrand Reinhold, 1987.
Znajdź pełny tekst źródłaEggleston, David M. Wind turbine engineering design. New York: Van Nostrand Reinhold, 1987.
Znajdź pełny tekst źródłaA, Spera David, red. Wind turbine technology: Fundamental concepts of wind turbine engineering. New York: ASME Press, 1994.
Znajdź pełny tekst źródłaA, Spera David, red. Wind turbine technology: Fundamental concepts of wind turbine engineering. Wyd. 2. New York, NY: ASME Press, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Wind turbines- Structural engineering"
Kinne, Marko, Ronald Schneider i Sebastian Thöns. "Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements". W Lecture Notes in Mechanical Engineering, 224–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_18.
Pełny tekst źródłaYuan, Guoqing, i Yu Chen. "Geometrical Nonlinearity Analysis of Wind Turbine Blade Subjected to Extreme Wind Loads". W Computational Structural Engineering, 521–28. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2822-8_57.
Pełny tekst źródłaBorri, Claudio, Paolo Biagini i Enzo Marino. "Large wind turbines in earthquake areas: structural analyses, design/construction & in-situ testing". W Environmental Wind Engineering and Design of Wind Energy Structures, 295–350. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0953-3_7.
Pełny tekst źródłaRen, Nianxin, i Jinping Ou. "Aerodynamic Interference Effect between Large Wind Turbine Blade and Tower". W Computational Structural Engineering, 489–95. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2822-8_54.
Pełny tekst źródłaRauch, M., i M. Knobloch. "Challenges for tower structures of multi-megawatt class wind turbines". W Insights and Innovations in Structural Engineering, Mechanics and Computation, 942–47. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-155.
Pełny tekst źródłaZasso, Alberto, Paolo Schito, Carlo L. Bottasso i Alessandro Croce. "Aero-Servo-Elastic Design of Wind Turbines: Numerical and Wind Tunnel Modeling Contribution". W Environmental Wind Engineering and Design of Wind Energy Structures, 97–190. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0953-3_4.
Pełny tekst źródłaCaterino, N., C. T. Georgakis, M. Spizzuoco i J. Chen. "Mitigation of Structural Demand to Wind Turbines: Experimental Investigation of Three Control Strategies". W Lecture Notes in Civil Engineering, 165–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12815-9_14.
Pełny tekst źródłaBanerjee, Arundhuti, Tanusree Chakraborty i Vasant Matsagar. "Stochastic Dynamic Analysis of an Offshore Wind Turbine Considering Soil-Structure Interaction". W Advances in Structural Engineering, 673–87. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2190-6_54.
Pełny tekst źródłaVoormeeren, S. N., P. L. C. van der Valk i D. J. Rixen. "Practical Aspects of Dynamic Substructuring in Wind Turbine Engineering". W Structural Dynamics and Renewable Energy, Volume 1, 163–85. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9716-6_16.
Pełny tekst źródłaMasithulela, F. "Structural analysis of wind turbine inner core based on local wind conditions". W Insights and Innovations in Structural Engineering, Mechanics and Computation, 693–98. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-114.
Pełny tekst źródłaStreszczenia konferencji na temat "Wind turbines- Structural engineering"
Pollack, Martin L., Brian J. Petersen, Benjamin S. H. Connell, David S. Greeley i Dwight E. Davis. "Resonance Avoidance of Offshore Wind Turbines". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37039.
Pełny tekst źródłaTorcinaro, M., F. Petrini i S. Arangio. "Structural Offshore Wind Turbines Optimization". W 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)195.
Pełny tekst źródłaBilionis, Dimitrios V., i Dimitrios Vamvatsikos. "PROPABILISTIC FATIGUE ANALYSIS OF OFFSHORE WIND TURBINES". W 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3465.1049.
Pełny tekst źródłaGiuliani, L., i F. Bontempi. "Structural Integrity Evaluation of Offshore Wind Turbines". W 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)194.
Pełny tekst źródłaArgyriadis, Kimon, i Marcus Klose. "Interaction of Load Analysis and Structural Design of Offshore Wind Turbines". W 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92081.
Pełny tekst źródłaChen, Qiong-zhong, i Olivier Bru¨ls. "Integrated Power Control Analysis of DFIG Wind Turbines Considering Structural Flexibility". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48253.
Pełny tekst źródłaXia, Yiqing, Yosuke Matsumoto, Iman Yousefi, Kazuyoshi Oouchi, Shunsuke Kaneko, Michio Nittouji, Kenji Fujii i Kaho Machida. "Structural Load Estimation of Downstream Wind Turbines in an Offshore Wind Farm". W ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-80883.
Pełny tekst źródłaSaeed, Nouman, Kai Long i A. Rehman. "A Review of Structural Optimization Techniques for Wind Turbines". W 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2020. http://dx.doi.org/10.1109/icomet48670.2020.9074067.
Pełny tekst źródłaMollasalehi, Ehsan, David H. Wood i Qiao Sun. "Small Wind Turbine Tower Structural Vibration". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87736.
Pełny tekst źródłaSaigal, Rakesh K., Dan Dolan, Armen Der Kiureghian, Tim Camp i Charles E. Smith. "An Assessment of Structural Design Guidelines for Offshore Wind Turbines". W ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29629.
Pełny tekst źródłaRaporty organizacyjne na temat "Wind turbines- Structural engineering"
Griffith, Daniel, Brian Ray Resor, Jonathan Randall White, Joshua A. Paquette i Nathanael C. Yoder. Structural health and prognostics management for offshore wind turbines :. Office of Scientific and Technical Information (OSTI), grudzień 2012. http://dx.doi.org/10.2172/1088103.
Pełny tekst źródłaMyrent, Noah J., Joshua F. Kusnick, Natalie C. Barrett, Douglas E. Adams i Daniel Griffith. Structural health and prognostics management for offshore wind turbines :. Office of Scientific and Technical Information (OSTI), kwiecień 2013. http://dx.doi.org/10.2172/1095942.
Pełny tekst źródłaBortolotti, Pietro, Helena C. Tarres, Katherine L. Dykes, Karl Merz, Latha Sethuraman, David Verelst i Frederik Zahle. IEA Wind TCP Task 37: Systems Engineering in Wind Energy - WP2.1 Reference Wind Turbines. Office of Scientific and Technical Information (OSTI), czerwiec 2019. http://dx.doi.org/10.2172/1529216.
Pełny tekst źródłaMiller, Mark S., i Derek E. Shipley. Structural Effects of Unsteady Aerodynamic Forces on Horizontal Axis Wind Turbines. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/10177977.
Pełny tekst źródłaSchulz, M. J., i M. J. Sundaresan. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/891105.
Pełny tekst źródłaMyrent, Noah J., Natalie C. Barrett, Douglas E. Adams i Daniel Todd Griffith. Structural Health and Prognostics Management for Offshore Wind Turbines: Sensitivity Analysis of Rotor Fault and Blade Damage with O&M Cost Modeling. Office of Scientific and Technical Information (OSTI), lipiec 2014. http://dx.doi.org/10.2172/1323601.
Pełny tekst źródłaPanek i Young. PR-312-12208-R02 Limitations and Costs Associated with Raising Existing RICE Stack Heights. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2014. http://dx.doi.org/10.55274/r0010556.
Pełny tekst źródłaLow Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc. Office of Scientific and Technical Information (OSTI), marzec 2006. http://dx.doi.org/10.2172/878476.
Pełny tekst źródłaDYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWERLINE SYSTEM UNDER DOWNBURST. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.068.
Pełny tekst źródła