Gotowa bibliografia na temat „Wind tunnel”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wind tunnel”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wind tunnel"
Andreas, Edgar L., i Larry Mahrt. "On the Prospects for Observing Spray-Mediated Air–Sea Transfer in Wind–Water Tunnels". Journal of the Atmospheric Sciences 73, nr 1 (21.12.2015): 185–98. http://dx.doi.org/10.1175/jas-d-15-0083.1.
Pełny tekst źródłaTabatabaei, Narges, Ramis Örlü, Ricardo Vinuesa i Philipp Schlatter. "Aerodynamic Free-Flight Conditions in Wind Tunnel Modelling through Reduced-Order Wall Inserts". Fluids 6, nr 8 (27.07.2021): 265. http://dx.doi.org/10.3390/fluids6080265.
Pełny tekst źródłaLiu, Jie, Yimeng Wu, Zhanyou Sa, Bingke Wang, Haijun Wang, Hao Wang i Shouqing Lu. "Study on the influence of cross-section shape on the characteristics of wind flow field in heavy-daty railway tunnel". E3S Web of Conferences 536 (2024): 01024. http://dx.doi.org/10.1051/e3sconf/202453601024.
Pełny tekst źródłaYao, Yahu. "Numerical Simulation Analysis of the Influence of Entrance Wind Speed on the Wind Speed Distribution of Coal Mine Tunnel Sections". Academic Journal of Science and Technology 7, nr 3 (29.10.2023): 208–12. http://dx.doi.org/10.54097/ajst.v7i3.13399.
Pełny tekst źródłaHasan, Mohammed Munif, i Shabudin Mat. "Data Reduction Analysis on UTM-LST External Balance". International Journal for Research in Applied Science and Engineering Technology 10, nr 10 (31.10.2022): 952–59. http://dx.doi.org/10.22214/ijraset.2022.47097.
Pełny tekst źródłaAllan, M. R., K. J. Badcock, G. N. Barakos i B. E. Richards. "Wind-tunnel interference effects on a 70° delta wing". Aeronautical Journal 108, nr 1088 (październik 2004): 505–13. http://dx.doi.org/10.1017/s0001924000000336.
Pełny tekst źródłaMa, Xiaojun, Yu Zhao, Xueying Wen i Jiujiu Chen. "Accessibility Study of a Compact Wind Tunnel with an Unequal Spacing Grid for the Outdoor Wind Environment". Buildings 12, nr 12 (9.12.2022): 2188. http://dx.doi.org/10.3390/buildings12122188.
Pełny tekst źródłaNISHIMURA, Hiroaki. "Wind Tunnel Experiment and Wind Tunnel Test". Wind Engineers, JAWE 39, nr 4 (2014): 333–34. http://dx.doi.org/10.5359/jawe.39.333.
Pełny tekst źródłaFlamand, Olivier, Philippe Delpech, Pierre Palier i Jean-Paul Bouchet. "Benefit of Wind Tunnels with Large Test Sections for Wind Engineering Applications". Mathematical Modelling in Civil Engineering 15, nr 2 (1.06.2019): 14–19. http://dx.doi.org/10.2478/mmce-2019-0005.
Pełny tekst źródłaZhang, Ying Chao, Wei Ding, Zhe Zhang i Jie Li. "Comparison Research on Aerodynamic Drags and Pressure Coefficients of Reference Car Models in Automotive Wind Tunnel". Advanced Materials Research 989-994 (lipiec 2014): 2834–38. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2834.
Pełny tekst źródłaRozprawy doktorskie na temat "Wind tunnel"
Premnath, S. M. Jason. "A tolerant axisymmetric wind tunnel". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28511.
Pełny tekst źródłaApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Mujica, Fernández Fernando R. (Fernando René). "Lattice gas wind tunnel". Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13444.
Pełny tekst źródłaHickle, Curtis. "Wind Tunnel renovation, flow verification and flapping wing analysis". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FHickle.pdf.
Pełny tekst źródłaThesis Advisor(s):Dr. Kevin Jones and Dr. Garth Hobson. "June 2006." Includes bibliographical references (p.79-81). Also available in print.
Paul, Matthew G. "Wing Deflection Analysis of 3D Printed Wind Tunnel Models". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1751.
Pełny tekst źródłaDanis, Reed. "Investigating Forward Flight Multirotor Wind Tunnel Testing in a 3-by 4-foot Wind Tunnel". DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1909.
Pełny tekst źródłaEngel, Mark A. "A wind tunnel investigation of a wing-tip trailing vortex". Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01102009-063459/.
Pełny tekst źródłaFitzgerald, Ryan Elizabeth. "Wind tunnel blockage corrections for propellers". College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7363.
Pełny tekst źródłaThesis research directed by: Dept. of Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lubitz, William David. "Near real time wind energy forecasting incorporating wind tunnel modeling /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Pełny tekst źródłaConan, Boris. "Wind resource accessment in complex terrain by wind tunnel modelling". Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00843645.
Pełny tekst źródłaOliveira, Henrique Balona de Sá. "Wind erosion of biochar-amended soil: a wind tunnel experiment". Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14312.
Pełny tekst źródłaBiochar application to soils has been reported in the scientific community as a possible means of improving agricultural productivity and, at the same time, as a powerful tool for carbon sequestration and climate change mitigation. However, current knowledge of biochar effects on soil functions and possible environmental threats is still not enough for a full-scale implementation. Erosion is one of the most serious and irreversible threats to soil and there is still no information if biochar may increase or decrease soil erosion rates. Soil erosion by wind is of particular interest for biochar, because of the low particle density and potential human exposure. The purpose of this study was to fill this knowledge gap by investigating the wind erosion potential of biochar-amended soil with a focus on the effect of soil moisture content, using a laboratory wind tunnel. Firstly, experimental tests were implemented in the DAO wind tunnel to define a robust wind erosion methodology in a facility only used for smoke studies. Sediment collecting methods, dust fraction analysis and wind velocity range were the main factors that required investigation. The erosion of biochar-amended soil (10% m m-1) and control soil (sandy soil) was simulated by positioning a tray divided in a sample area and an area for creeping particles, inside the test section of the wind tunnel. To determine the effect of soil moisture content on the erosion potential, four moisture contents were used: 0.2%, 1.7%, 4% and 8% (gravimetric). The wind tunnel simulations were performed with the duration of 15 minutes at a wind velocity of 7 m s-1. The samples of collected sediment were oven-dried and weighed to give the sediment loss as consequence of the erosion event. Results on the erosion simulations for control and biochar-amended soil with the wind flow velocity of 7 m s-1 (small erosion event) indicated that only biochar particles were displaced. Erosion of biochar-amended soil was similar for 0.2%, 1.7% and 4.0% and despite a sediment loss reduction of 50% from 4% MC to the higher MC, 8%, this latter was not identified as the threshold MC for the moment when erosion ceases to exist. As for mineral particles, after 4% MC there was no sediment collected indicating this MC as the threshold, even though a reduced mass of particles eroded for the smaller MCs. Further future tests are needed to build a more comprehensive understanding of wind erosion of biochar-amended soils. Relevant factors to include are: higher wind velocities representative of medium and high erosion events, as well as higher MCs to identify when erosion of biochar particles will stop completely. Secondly, based on the results found in the present study, other soil types and biochar types warrant further investigation. Studies like this contribute for the understanding of the effects of biochar application to soil functions, as well as the behaviour and fate of this material, which are indispensable for the development of adequate biochar regulations and policies.
A aplicação de biochar no solo tem sido referida na comunidade científica como um possível meio para melhorar a produtividade agrícola e, ao mesmo tempo, como um instrumento para sequestro de carbono e mitigação de alterações climáticas. Contudo, o conhecimento actual sobre os efeitos do biochar nas funções do solo e possíveis ameaças ambientais não é, ainda, suficiente para uma implementação em larga escala. A erosão é uma das mais sérias e irreversíveis ameaças ao solo e não existe, ainda, informação se o biochar pode aumentar ou reduzir os níveis de erosão. A erosão do solo pelo vento é de particular interesse para o biochar, devido à reduzida densidade das partículas e à potencial exposição humana. O objectivo deste trabalho foi preencher esta falha ao investigar o potencial de erosão do solo melhorado com biochar com enfoque no efeito do teor de humidade, usando um túnel de vento. Primeiramente, testes experimentais foram implementados no túnel de vento do DAO para definir uma metodologia robusta de erosão eólica numa estrutura, até então, apenas usada para estudos de dispersão de poluentes. A colecta do sedimento, análise de fracção de poeiras e a gama de velocidades foram os factores principais que necessitaram de investigação. A erosão de solo com biochar (10% m m-1) e de solo de controle (solo arenoso) foi simulada posicionando um tabuleiro dividido em área de amostra e área para partículas de rolamento, dentro da secção de teste do túnel de vento. Para determinar o efeito do teor de humidade do solo no potencial de erosão, quatro teores de humidade foram usados: 0.2%, 1.7%, 4% and 8% (gravimétricos). As simulações no túnel de vento foram realizadas com a duração de 15 minutos a uma velocidade do vento de 7 m s-1. As amostras de sedimento colectado foram secas e pesadas para fornecerem a perda de sedimento como consequência do evento de erosão. Os resultados das simulações de erosão para o controle e o solo melhorado com biochar, com a velocidade de 7 m s-1 (reduzido evento de erosão) indicaram que apenas partículas de biochar foram movidas. Erosão de solo com biochar foi semelhante para 0.2%, 1.7% and 4.0% e, apesar da redução da perda de sedimento em 50% do teor de 4% para para o teor mais alto, 8%, este último não foi identificado como sendo o limiar para o momento em que a erosão deixa de existir. Relativamente às partículas minerais, após o teor de 4% não houve sedimento colectado indicando este teor de humidade como o limiar, ainda que uma massa reduzida de partículas tenha sofrido erosão para teores mais reduzidos. Testes futuros são necessários para gerar um melhor conhecimento acerca de erosão de solo com biochar pelo vento. Factores relevantes a incluir são: maiores velocidades do vento, representativas de eventos de erosão médios e elevados, tal como maiores teores de humidade para identificar quando a erosão de partículas de biochar pára por completo. Em segundo lugar, com base nos resultados observados neste estudo, outro tipos de solo e biochar impõe mais investigação.Estudos como este contribuem para perceber os efeitos da aplicação de biochar nos solos, bem como o comportamento e destino deste material, que são indispensáveis para o desenvolvimento de regulamentos e políticas adequadas sobre biochar.
Książki na temat "Wind tunnel"
Ajay, Kumar, Kegelman Jerome T i United States. National Aeronautics and Space Administration., red. The Langley wind tunnel enterprise. [Washington, DC: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaAjay, Kumar, Kegelman Jerome T i United States. National Aeronautics and Space Administration., red. The Langley wind tunnel enterprise. [Washington, DC: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Quality assessment for wind tunnel testing. Neuilly-sur-Seine, France: AGARD, 1994.
Znajdź pełny tekst źródłaNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Quality assessment for wind tunnel testing. Neuilly-sur-Seine: AGARD, 1994.
Znajdź pełny tekst źródłaHufnagel, Klaus. Wind Tunnel Balances. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97766-5.
Pełny tekst źródłaEverhart, Joel L. Slotted-wall flow-field measurements in a transonic wind tunnel. Hampton, Va: Langley Research Center, 1991.
Znajdź pełny tekst źródłaB, Igoe William, Flechner Stuart G i United States. National Aeronautics and Space Administration. Scientific and Technical Information Program, red. Slotted-wall flow-field measurements in a transonic wind tunnel. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Znajdź pełny tekst źródłaB, Igoe William, Flechner Stuart G i United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., red. Slotted-wall flow-field measurements in a transonic wind tunnel. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Znajdź pełny tekst źródłaE, Mineck Raymond, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., red. Adaptive wind tunnel walls: A selected, annotated bibliograpy. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaA, Kilgore Robert, Moore Deborah L i United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. Cryogenic wind tunnels: A comprehensive, annotated bibliography. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Wind tunnel"
Fujino, Yozo, Kichiro Kimura i Hiroshi Tanaka. "Wind Tunnel Tests". W Wind Resistant Design of Bridges in Japan, 89–118. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54046-5_6.
Pełny tekst źródłaSchatzmann, Michael, Stylianos Rafailidis i Nijs Jan Duijm. "Wind Tunnel Experiments". W Urban Air Pollution — European Aspects, 261–76. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9080-8_14.
Pełny tekst źródłaGao, Lei. "Wind Tunnel Test". W Encyclopedia of Ocean Engineering, 1–4. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6963-5_265-1.
Pełny tekst źródłaGao, Lei. "Wind Tunnel Test". W Encyclopedia of Ocean Engineering, 2169–72. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_265.
Pełny tekst źródłaBruno, Roberto, i Vincenzo Carbone. "A Natural Wind Tunnel". W Turbulence in the Solar Wind, 169–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43440-7_6.
Pełny tekst źródłaMatthews, R. K. "Hypersonic Wind Tunnel Testing". W Advances in Hypersonics, 72–108. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0379-7_3.
Pełny tekst źródłaFischer, Oliver. "Wind Tunnel Interference Effects". W Investigation of Correction Methods for Interference Effects in Open-Jet Wind Tunnels, 19–24. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21379-4_3.
Pełny tekst źródłaZasso, Alberto, Alessandro Fontanella i Marco Belloli. "3D Wind Tunnel Experiments". W Handbook of Wind Energy Aerodynamics, 687–703. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-31307-4_31.
Pełny tekst źródłaBoorsma, Koen. "Wind Tunnel Rotor Measurements". W Handbook of Wind Energy Aerodynamics, 659–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-31307-4_30.
Pełny tekst źródłaBoorsma, Koen. "Wind Tunnel Rotor Measurements". W Handbook of Wind Energy Aerodynamics, 1–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-05455-7_30-2.
Pełny tekst źródłaStreszczenia konferencji na temat "Wind tunnel"
Gungor, Osman, Muhammed Kilic, Ayberk Caglar i Ahmet Ezertas. "Wind Tunnel Testing of Heavy Class Attack Helicopter in a Pressurized Wind Tunnel". W Vertical Flight Society 80th Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1344.
Pełny tekst źródłaScott, Robert C., Timothy Allen, Mark Castelluccio, Bradley Sexton, Scott Claggett, John R. Dykman, Christie Funk, David Coulson i Robert E. Bartels. "Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model". W 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1172.
Pełny tekst źródłaMartin, Christopher A., Larry Jasmin, John S. Flanagan, Kari Appa i Jayanth N. Kudva. "Smart wing wind tunnel model design". W Smart Structures and Materials '97, redaktor Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274675.
Pełny tekst źródłaScherer, Lewis B., Christopher A. Martin, Kari Appa, Jayanth N. Kudva i Mark N. West. "Smart wing wind tunnel test results". W Smart Structures and Materials '97, redaktor Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274694.
Pełny tekst źródłaAlves, Leonardo Boa Sorte, Marco Gabaldo, Luiz Severiano Dutra i Jose Eduardo Mautone Barros. "Wind Tunnel Balance". W 26th SAE BRASIL Inernational Congress and Display. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-36-0237.
Pełny tekst źródłaDekterev, Ar A., A. A. Dekterev i D. A. Dekterev. "PIXEL WIND TUNNEL". W XXXVIII Сибирский теплофизический семинар, посвященный 65-летию Института теплофизики им. С.С.Кутателадзе СО РАН. Новосибирск: Сибирское отделение РАН, 2022. http://dx.doi.org/10.53954/9785604859551_73.
Pełny tekst źródła"Wind Tunnel Methods". W SP-240: Performance-Based Design of Concrete Building for Wind Loads. American Concrete Institute, 2006. http://dx.doi.org/10.14359/18294.
Pełny tekst źródłaBurdett, Timothy A., i Kenneth W. Van Treuren. "Scaling Small-Scale Wind Turbines for Wind Tunnel Testing". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68359.
Pełny tekst źródłaMarks, Christopher R., Lauren Zientarski, Adam J. Culler, Benjamin Hagen, Brian M. Smyers i James J. Joo. "Variable Camber Compliant Wing - Wind Tunnel Testing". W 23rd AIAA/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1051.
Pełny tekst źródłaOzkan, Ender, Emanuele Mattiello, Francesco Dorigatti, Zachary Taylor, Erik Marble, Mark Istvan, Yildiray Yildizhan i Onur Kantar. "Sazlidere Bridge Wind Tunnel Testing Assisted Design". W IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0936.
Pełny tekst źródłaRaporty organizacyjne na temat "Wind tunnel"
Slone, Scott, Marissa Torres, Alexander Stott, Ethan Thomas i Robert Ibey. CRREL Environmental Wind Tunnel upgrades and the Snowstorm Library. Engineer Research and Development Center (U.S.), styczeń 2024. http://dx.doi.org/10.21079/11681/48077.
Pełny tekst źródłaMiles, Richard B., i Garry L. Brown. Radiatively Driven Hypersonic Wind Tunnel. Fort Belvoir, VA: Defense Technical Information Center, maj 2002. http://dx.doi.org/10.21236/ada403037.
Pełny tekst źródłaMayda, Edward A., C. P. van Dam, David D. Chao i Dale E. Berg. Flatback airfoil wind tunnel experiment. Office of Scientific and Technical Information (OSTI), kwiecień 2008. http://dx.doi.org/10.2172/933221.
Pełny tekst źródłaAlexander, Michael G. Subsonic Wind Tunnel Testing Handbook. Fort Belvoir, VA: Defense Technical Information Center, maj 1991. http://dx.doi.org/10.21236/ada240263.
Pełny tekst źródłaGrossir, Guillaume. On the design of quiet hypersonic wind tunnels. Von Karman Institute for Fluid Dynamics, grudzień 2020. http://dx.doi.org/10.35294/tm57.
Pełny tekst źródłaManiet, Edward R., i Jr. Wind Tunnel Measurements of Windscreen Performance. Fort Belvoir, VA: Defense Technical Information Center, październik 2001. http://dx.doi.org/10.21236/ada409180.
Pełny tekst źródłaWillard, Richard S., i Stan K. Kranzler. Improved Wind Tunnel Data Reduction Procedure. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1996. http://dx.doi.org/10.21236/ada345019.
Pełny tekst źródłaHeim, E. R. CFD Wing/Pylon/Finned Store Mutual Interference Wind Tunnel Experiment. Fort Belvoir, VA: Defense Technical Information Center, luty 1991. http://dx.doi.org/10.21236/adb152669.
Pełny tekst źródłaArunajatesan, Srinivasan, i Katya Casper. Trisonic Wind Tunnel (TWT )Complex Cavity Geometry. Office of Scientific and Technical Information (OSTI), kwiecień 2015. http://dx.doi.org/10.2172/1177759.
Pełny tekst źródłaTorres, Marissa, Alexander Stott, Sandra LeGrand i Marina Reilly-Collette. CRREL Environmental Wind Tunnel : characteristics and capabilities. Engineer Research and Development Center (U.S.), maj 2019. http://dx.doi.org/10.21079/11681/32733.
Pełny tekst źródła