Gotowa bibliografia na temat „WIND LOAD EFFECT”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „WIND LOAD EFFECT”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "WIND LOAD EFFECT"
Kim, Taeo, Sang Whan Han i Soo Ik Cho. "Effect of Wind Loads on Collapse Performance and Seismic Loss for Steel Ordinary Moment Frames". Applied Sciences 12, nr 4 (15.02.2022): 2011. http://dx.doi.org/10.3390/app12042011.
Pełny tekst źródłaGao, Yong Tao, i Xiao Hu. "Wind Load Analysis on Adherent Billboard Considering the Turbulent Wind". Applied Mechanics and Materials 90-93 (wrzesień 2011): 1365–68. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.1365.
Pełny tekst źródłaDing, Wei, i Yasushi Uematsu. "Discussion of Design Wind Loads on a Vaulted Free Roof". Wind 2, nr 3 (8.07.2022): 479–94. http://dx.doi.org/10.3390/wind2030026.
Pełny tekst źródłaGuo, Long, Ai Rong Chen i Li Ping Xu. "Strait Crossing Cable Stayed Bridge Girder Evolution". Advanced Materials Research 250-253 (maj 2011): 1407–17. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.1407.
Pełny tekst źródłaBao, Wen Bo, Yu Yong Hu i Yang Cui. "Wind Loads Simulation of Tall Building Structure Subjected to Wind-Structure Interaction". Advanced Materials Research 163-167 (grudzień 2010): 4286–89. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4286.
Pełny tekst źródłaWei, Hua, Yan Jun Cheng, Zhi Yuan Peng i Hai Jun Wang. "Finite Element Analysis for the Wind Resistance of the Tower of Wind Turbine". Advanced Materials Research 189-193 (luty 2011): 1718–21. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1718.
Pełny tekst źródłaWu, Xiaotong, Ying Sun, Yue Wu, Ning Su i Shitao Peng. "The Interference Effects of Wind Load and Wind-Induced Dynamic Response of Quayside Container Cranes". Applied Sciences 12, nr 21 (29.10.2022): 10969. http://dx.doi.org/10.3390/app122110969.
Pełny tekst źródłaZakhama, R., M. M. Abdalla, Z. Gürdal i H. Smaoui. "Wind load effect in topology optimization problems". Journal of Physics: Conference Series 75 (1.07.2007): 012048. http://dx.doi.org/10.1088/1742-6596/75/1/012048.
Pełny tekst źródłaBrungardt, M. V., A. V. Brungardt, E. A. Goncharova i O. A. Li. "Effect of wind load on waveguide strength". Journal of Physics: Conference Series 2373, nr 2 (1.12.2022): 022037. http://dx.doi.org/10.1088/1742-6596/2373/2/022037.
Pełny tekst źródłaHafeez, G., A. M. El Ansary i A. A. El Damatty. "Effect of wind loads on the stability of conical tanks". Canadian Journal of Civil Engineering 38, nr 4 (kwiecień 2011): 444–54. http://dx.doi.org/10.1139/l11-017.
Pełny tekst źródłaRozprawy doktorskie na temat "WIND LOAD EFFECT"
Mutallimov, Turan. "Wind load effect on storage tanks in Azerbaijan". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23576/.
Pełny tekst źródłaJones, Scott Alan. "Effect of pruning type, pruning dose, and wind speed on tree response to wind load". [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013321.
Pełny tekst źródłaMartin, Mogamat Noer. "Optimal placement and effect of a wind farm on load flow and protection systems in a municipal distribution network". Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/31005.
Pełny tekst źródłaAYME, CARRIE NATHALIE. "Analyse des effets du vent sur les structures baties : constructions basses et structures elancees". Nantes, 1987. http://www.theses.fr/1987NANT2051.
Pełny tekst źródłaLemoult, Bernard. "Contribution a la connaissance des actions du vent sur les batiments a structure metallique". Poitiers, 1988. http://www.theses.fr/1988POIT2201.
Pełny tekst źródłaWoldemikael, Biruk Worku. "Effects of cracking of coupling beams onhigh rise towers subjected to wind load". Thesis, KTH, Betongbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290589.
Pełny tekst źródłaI höghus används hisschakt av armerad betong tillsammans med kopplingsbalkar i stor utsträckning som främsta konstruktionselement för att motstå horisontella laster. Tornets horisontella bärförmåga är beroende av analytiska studier och studier med finita element metoden styvheten hos de bärande väggarna, och kopplingsbalkarna som förbinder dem. För att studera minskningen av styvheten i höghustorn på grund av sprickbildning i kopplingsbalkar, variationen i armeringsmängden, betongkvaliteten och effekten av ledflexibilitet vid balk-vägg-knutpunkten, presenterar detta examensarbete kopplingsbalkarnas effektiva styvhet och höghusets globala stabilitet. En omfattande parametrisk studie på 240 olika kombinationer av armerade kopplingsbalkar och 32 modeller av ett höghus har genomförts för att härleda den effektiva styvheten i de armerade kopplingsbalkarna från last-deformationskurvan. Som ett resultat beräknas styvheten och den ekvivalenta höjden av kopplingsbalkarna och plottas som funktion av betongkvaliteten och armeringsmängden. Dessutom modelleras höghuset för både spruckna & armerade kopplingsbalkar samt oarmerade & ospruckna kopplingsbalkar för att erhålla utböjningen av höghusets topp. Resultatet plottas som funktion av betongkvaliteten och armeringsmängden. De erhållna resultaten visar att styvhetsförhållandet och förhållandet mellan ekvivalent höjd till normal höjd ökar med mer längsgående armering och tvärsnittsförhållandet men minskar med en ökning av betongkvaliteten för både den analytiska och finita elementmetoden. Utböjningen av höghusets topp påverkas inte nämnbart av en ökning av armeringsmängden i de slanka kopplingsbalkarna och vice versa för både den analytiska och finita elementmetoden. Oberoende av slankheten av kopplingsbalkarna ökar styvheten betydligt med en ökning av betongkvaliteten. Dessa resultat visar en bra bild på hur man väljer ekvivalent höjd i modellen utan armering. Därmed kommer det framtagna diagrammet vara en mer praktisk metod för att i ett tidigt skede konstruera en hel byggnad. Tjocka kopplingsbalkar måste armeras för att nå tvärsnittets styvhet medan smala tvärsnitt kommer att ha en högre styvhet med armering. Detta skulle hjälpa konstruktören att hitta en mer rationell modell utan armering. Med hjälp av Hans Peterssons analytiska metod, angående ledflexibiliteten vid balk-väggknutpunkten, bör styvheten minskas för att utnyttja den fulla kapaciteten hos en betongkopplingsbalk. För globala modeller, oberoende av de slanka kopplingsbalkarna, ökar styvheten betydligt med en ökning av betongkvaliteten.
Kayisoglu, Bengi. "Investigation Of Wind Effects On Tall Buildings Through Wind Tunnel Testing". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613324/index.pdf.
Pełny tekst źródłaAl, Tubi Issa. "Effects of variable load and rotational speed conditions on gear micropitting in wind turbine gearboxes". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7173/.
Pełny tekst źródłaYoung, Michael A. "Effect of open fields on low building wind loads in a suburban environment". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28694.pdf.
Pełny tekst źródłaRIOS, MARINA POLONIA. "EFFECT OF DAMPERS ON THE DYNAMIC BEHAVIOUR OF TALL BUILDINGS UNDER WIND LOADS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25761@1.
Pełny tekst źródłaO aumento da altura dos edifícios, aliado ao surgimento de materiais mais resistentes, faz com que as estruturas sejam cada vez mais esbeltas. Com isso, a ação do vento se torna um importante fator a ser considerado nesses projetos. A sua característica dinâmica provoca efeitos de vibração nas estruturas que devem ser analisados, em especial em relação ao conforto do usuário, afetado por deslocamentos e acelerações elevadas. Este estudo aborda a utilização de amortecedores fluidos como forma de reduzir a resposta dinâmica das estruturas submetidas a cargas de vento. A carga de vento consiste em um evento aleatório, devendo ser analisada estatisticamente. Desta forma, foi adotado o Método dos Ventos Sintéticos para definir o carregamento de vento aplicado à estrutura. Os amortecedores empregados na estrutura são fluidos, altamente viscosos, portanto seu comportamento pode ser considerado linear. A avaliação do comportamento da estrutura foi realizada pelo programa computacional Robot Structural Analysis. Foi feita uma análise estática afim de realizar o pré-dimensionamento da estrutura. Em seguida, fez-se uma análise dinâmica para a estrutura submetida ao carregamento de vento, com o objetivo de se analisar a influência dos amortecedores. Foram definidos cinco modelos estruturais, com diferentes configurações de amortecedores, de forma a encontrar a sua melhor distribuição na estrutura para reduzir a resposta a níveis aceitáveis de conforto para os usuários.
With the increase in building height and the development of more resistant materials, structures are becoming more flexible. This has made the consideration of wind loads an important factor to be considered in their projects. The dynamic characteristic of these loads causes important vibration effects in these structures due to their low vibration frequencies, which must be considered in design, especially regarding the users comfort, affected by high displacements and acceleration. This study analyses the use of fluid dampers in order to reduce the dynamic response of the structure under wind loading. The wind load is a random phenomenon, and must be studied statistically. In the present work the Synthetic Wind Method has been adopted in order to generate the variation of the wind load in time. The dampers applied to the structure are fluid dampers, highly viscous, so its behavior can be considered linear. The computer software Robot Structural Analysis is used to study the structural behavior. An analysis considering the wind as an equivalent static load is adopted for the preliminary design. Then, a dynamic analysis is conducted, considering the structure under a time varying wind loading, to investigate the effect of the fluid dampers on the response. Five models are investigated, with different configurations for the dampers, in order to define the best configuration and obtain acceptable levels of displacements and acceleration.
Książki na temat "WIND LOAD EFFECT"
H, Scanlan Robert, red. Wind effects on structures: An introduction to wind engineering. Wyd. 2. New York: Wiley, 1986.
Znajdź pełny tekst źródłaH, Scanlan Robert, red. Wind effects on structures: Fundamentals and applications to design. Wyd. 3. New York: John Wiley, 1996.
Znajdź pełny tekst źródłaSimiu, Emil. Wind effects on structures: Fundamentals and applications to design. Wyd. 3. Mineola, N.Y: Dover Publications, Inc., 2008.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch. i George C. Marshall Space Flight Center., red. Study of wind change for the development of loads reduction techniques for the space shuttle. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Znajdź pełny tekst źródłaI, Adelfang Stanley, i George C. Marshall Space Flight Center., red. A compendium of wind statistics and models for the NASA space shuttle and other aerospace vehicle programs. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.
Znajdź pełny tekst źródłaL, Wilbur Matthew, Langley Research Center i U.S. Army Research Laboratory., red. Wind-tunnel evaluation of the effect of blade nonstructural mass distribution on helicopter fixed-system loads. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Znajdź pełny tekst źródłaL, Wilbur Matthew, U.S. Army Research Laboratory. i Langley Research Center, red. Wind-tunnel evaluation of the effect of blade nonstructural mass distribution on helicopter fixed-system loads. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Znajdź pełny tekst źródłaMeyer, Robert R. Effects of winglets on a first-generation jet transport wing: VII - Sideslip effects on winglet loads and selected wing loads at subsonic speeds for a full-scale model. Edwards, Calif: Dryden Flight Research Facility, 1986.
Znajdź pełny tekst źródłaF, Covell Peter, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., red. Effects of winglets on a first-generation jet transport wing: VII, sideslip effects on winglet loads and selected wing loads at subsonic speeds for a full-span model. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaJimmy, Fung, i Langley Research Center, red. Parameter estimation of actuators for Benchmark Active Control Technology (BACT) wind tunnel model with analysis of wear and aerodynamic loading effects. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "WIND LOAD EFFECT"
Tonk, Himanshu, Ajay Pratap, Neelam Rani i Vinayak Gautam. "Wind Load Effect on Square and Helical Buildings". W Lecture Notes in Civil Engineering, 365–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12011-4_28.
Pełny tekst źródłaGautam, Vinayak, i Neelam Rani. "Numerically Investigating the Effect of Wind Load on Square and Setback Building". W Lecture Notes in Civil Engineering, 43–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1886-7_4.
Pełny tekst źródłaSingh, Ashish, Piyush Gaikwad i Sasankasekhar Mandal. "Shear Lag Effect in Framed-Tube Buildings Due to Torsional Wind Load". W Lecture Notes in Mechanical Engineering, 123–31. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4183-4_12.
Pełny tekst źródłaMandal, Shanku, Sujit Kumar Dalui i Soumya Bhattacharjya. "Effect of Limb Position on U Plan Shaped Tall Building Under Wind Load". W Lecture Notes in Mechanical Engineering, 107–18. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6490-8_10.
Pełny tekst źródłaKumar, C. L. Mahesh, K. G. Shwetha, B. C. Shanthappa i K. Manjunatha. "Effect of Buckling Due to Wind Load on Analysis of Natural Draught Cooling Tower". W Lecture Notes in Civil Engineering, 1077–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_67.
Pełny tekst źródłaLiu, Dongyun, Chao Wang, Jaime Gonzalez-Libreros, Ola Enoksson, Tommy Hojsten, Yongming Tu, Lennart Elfgren i Gabriel Sas. "Numerical Analysis of High-Speed Train Induced Aerodynamic Load on Noise Barrier Considering Wind Effect". W Lecture Notes in Civil Engineering, 332–41. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32511-3_36.
Pełny tekst źródłaBoopathi, D., K. Jagatheesan, B. Anand, V. Kumarakrishnan i Sourav Samanta. "Effect of Sustainable Energy Sources for Load Frequency Control (LFC) of Single-Area Wind Power Systems". W Industrial Transformation, 87–98. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003229018-5.
Pełny tekst źródłaAbu-Siada, Ahmed. "Preface". W Recent Advances in Renewable Energy, i. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020001.
Pełny tekst źródłaSrikanth, P., i A. S. Sekhar. "Effect of Gear Tooth Breakage on the Dynamic Response in a Wind Turbine Drive Train Subjected to Stochastic Load Excitation". W Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1333–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_109.
Pełny tekst źródłaBalendra, T. "Dynamic Effects of Winds on Buildings". W Vibration of Buildings to Wind and Earthquake Loads, 47–82. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2055-1_3.
Pełny tekst źródłaStreszczenia konferencji na temat "WIND LOAD EFFECT"
Wan Chik, F. A., N. I. Ramli, M. K. A. Muhammad, T. A. Majid i Amirul Hafiz. "The Effect of Wind Load on Rural Roofing System". W Eighth Asia-Pacific Conference on Wind Engineering. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-8012-8_276.
Pełny tekst źródłaNga Nguyen i Joydeep Mitra. "Effect of wind power on load frequency control". W 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. http://dx.doi.org/10.1109/pesgm.2016.7741814.
Pełny tekst źródłaMoriarty, Patrick J., William E. Holley i Sandy Butterfield. "Effect of Turbulence Variation on Extreme Loads Prediction for Wind Turbines". W ASME 2002 Wind Energy Symposium. ASMEDC, 2002. http://dx.doi.org/10.1115/wind2002-50.
Pełny tekst źródławei Zhang, Zheng, i Alex P. To. "Recommendation on Topographic Effect Correction Factor for Applying of Chinese National Wind Load Code". W Eighth Asia-Pacific Conference on Wind Engineering. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-8012-8_187.
Pełny tekst źródłaChen, Xiaolu, Zhiyu Jiang, Qinyuan Li i Ye Li. "Effect of Wind Turbulence on Extreme Load Analysis of an Offshore Wind Turbine". W ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95634.
Pełny tekst źródłaYurong Zhang, Bin Wang, Min Zhang, Yi Feng, Wenzhong Cao i Lin Zhang. "Unit commitment considering effect of load and wind power uncertainty". W 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976527.
Pełny tekst źródłaKvittem, Marit, i Ludvik Kjosås Bergmann. "The Effect of Mean Tension on Fatigue of Mooring Chain for a 12 MW Semi-Submersible Wind Turbine". W ASME 2022 4th International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iowtc2022-94183.
Pełny tekst źródłaDamatty, Ashraf El, Ahmed Hamada i Amal Elawady. "Development of Critical Load Cases Simulating the Effect of Downbursts and Torndos on Transmission Line Structures". W Eighth Asia-Pacific Conference on Wind Engineering. Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-8012-8_key-01.
Pełny tekst źródłaYi, Lin, An-kang Hu, Jiang Wei i Xiong Fei. "The Wind Tunnel Experiment Study of Wind Load on Jack-Up Drilling Unit". W ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83675.
Pełny tekst źródłaHu, An-kang, Yi Lin i Wei Jiang. "The Wind Tunnel Experiment Study of Wind Load on Jack-Up Drilling Unit". W ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10194.
Pełny tekst źródłaRaporty organizacyjne na temat "WIND LOAD EFFECT"
Boyle, Maxwell, i Elizabeth Rico. Terrestrial vegetation monitoring at Fort Pulaski National Monument: 2019 data summary. National Park Service, grudzień 2021. http://dx.doi.org/10.36967/nrds-2288716.
Pełny tekst źródłaBUCKLING BEHAVIOUR OF THE STEEL PLATE IN STEEL – CONCRETE – STEEL SANDWICH COMPOSITE TOWER FOR WIND TURBINE. The Hong Kong Institute of Steel Construction, wrzesień 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.7.
Pełny tekst źródła