Gotowa bibliografia na temat „Wind erosion”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wind erosion”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Wind erosion"

1

Liu, Jun, Xuyang Wang, Li Zhang, Zhongling Guo, Chunping Chang, Heqiang Du, Haibing Wang, Rende Wang, Jifeng Li i Qing Li. "Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China". International Journal of Environmental Research and Public Health 19, nr 15 (3.08.2022): 9538. http://dx.doi.org/10.3390/ijerph19159538.

Pełny tekst źródła
Streszczenie:
Wind erosion is crucial for assessing regional ecosystem services and sustainable development. The Agro-Pastoral Ecotone of northern China (APEC) is a typical region undergoing wind erosion and soil degradation. In this study, the National Wind Erosion Survey Model of China, the Integrated Wind Erosion Modeling System, and the regional versions of the Revised Wind Erosion Equation and Wind Erosion Prediction System were used to evaluate the regional potential wind erosion of the APEC during 2000 and 2012. The results showed that the potential wind erosion predicted by National Wind Erosion Survey Model of China (NWESMC), Revised Wind Erosion Equation (RWEQ), Wind Erosion Prediction System (WEPS), and Integrated Wind Erosion Modeling System (IWEMS) were significantly related to the observed wind erosion collected from published literature, but the observed data were generally smaller than the predicted values. The average potential wind erosions were 12.58, 25.87, 52.63, and 58.72 t hm−2 a−1 for NWESMC, RWEQ, WEPS, and IWEMS, respectively, while the spatial pattern and temporal trend of annual potential wind erosion were similar for different wind erosion models. Wind speed, soil moisture, and vegetation coverage were the dominant factors affecting regional wind erosion estimation. These results highlight that it is necessary to comprehensively calibrate and validate the selected wind erosion models. A long-term standard wind erosion monitoring network is urgently required. This study can serve as a useful reference for improving wind erosion models.
Style APA, Harvard, Vancouver, ISO itp.
2

Dufková, Jana. "Potential threat of southern Moravia soils by wind erosion". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 52, nr 2 (2004): 33–42. http://dx.doi.org/10.11118/actaun200452020033.

Pełny tekst źródła
Streszczenie:
Wind erosion is caused by meteorological factors such as wind, precipitation and evaporation that influence the soil humidity. Erosive-climatological factor expresses wind and humidity conditions of particular landscape. This is an index of the influence of average soil surface humidity and average wind velocity on average soil erodibility by wind. On the basis of average wind velocity and Konček’s humidity index, the values of the erosive-climatological factor for three chosen areas of Czech republic (Telč-Kostelní Myslová, Znojmo-Kuchařovice and Brno-Tuřany), where the pro-cesses of wind erosion could exist, were evaluated. Thus, the change of the factor’s value during the period of 1961 – 2000 was studied. The linear trend for the region of Brno and Znojmo (dry areas) shows increasing threat of soils by wind erosion, the contrary situation is at the humid area (Telč). The results prove the influence of soil humidity on the erosive-climatological factor and hereby the influence on wind erosion spreadout.
Style APA, Harvard, Vancouver, ISO itp.
3

FRYREAR, DONALD W., i ALI SALEH. "FIELD WIND EROSION". Soil Science 155, nr 4 (kwiecień 1993): 294–300. http://dx.doi.org/10.1097/00010694-199304000-00008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Skidmore, E. L. "Wind erosion control". Climatic Change 9, nr 1-2 (1986): 209–18. http://dx.doi.org/10.1007/bf00140537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chornyy, S., i O. Pismenniy. "Wind erosion resistance of steppe soils of Ukraine". Agricultural Science and Practice 1, nr 3 (15.12.2014): 43–49. http://dx.doi.org/10.15407/agrisp1.03.043.

Pełny tekst źródła
Streszczenie:
Aim. The study of direct (wind erosion resistance) and indirect (lumpiness, mechanical durability, etc) indices of current wind erosion resistance of steppe soils in Ukraine. Methods. The following methods were used: fi eld, laboratory, mathematical and statistical, analytical and comparative methods. Wind resistance of soils was studied using the elaborated method in the aerodynamic unit. Results. The studies revealed that the high- est resistance to soil blowing due to strong winds is demonstrated by light loamy chernozem, somewhat lower resistance – by southern and dark-chestnut heavy loamy chernozem, light loamy, sandy loamy and sandy turf soil. It was demonstrated that the irrigation with mineralized water enhances the indices of wind erosion resis- tance of dark-chestnut soil and southern chernozem. The granulometric analysis of soil revealed quantitative dependence between the wind erosion resistance, humus content and physical clay content. Conclusions. The studies on wind erosion resistance of dry steppe and southern steppe soils of Ukraine and the classifi cation of soil types regarding their capability of resisting strong winds allow implementing the measures of preventing wind erosion.
Style APA, Harvard, Vancouver, ISO itp.
6

Marzen, Miriam, Thomas Iserloh, Wolfgang Fister, Manuel Seeger, Jesus Rodrigo-Comino i Johannes B. Ries. "On-Site Water and Wind Erosion Experiments Reveal Relative Impact on Total Soil Erosion". Geosciences 9, nr 11 (14.11.2019): 478. http://dx.doi.org/10.3390/geosciences9110478.

Pełny tekst źródła
Streszczenie:
The relative impact of water and wind on total erosion was investigated by means of an experimental-empirical study. Wind erosion and water erosion were measured at five different sites: (1) Mediterranean fallow, (2) Mediterranean orchard, (3) wheat field, (4) vineyard and (5) sand substrate. Mean erosion rates ranged from 1.55 to 618 g·m−2·h−1 for wind and from 0.09 to 133.90 g·m−2·h−1 for rain eroded material over all tested sites. Percentages (%) of eroded sediment for wind and rain, respectively, were found to be 2:98 on Mediterranean fallow, 11:89 on Mediterranean orchard, 3:97 on wheat field, 98:2 on vineyard and 99:1 on sand substrate. For the special case of soil surface crust destroyed by goat trampling, the measured values emphasize a strong potential impact of herding on total soil erosion. All sites produced erosion by wind and rain, and relations show that both erosive forces may have an impact on total soil erosion depending on site characteristics. The results indicate a strong need to focus on both wind and water erosion particularly concerning soils and substrates in vulnerable environments. Measured rates show a general potential erosion depending on recent developments of land use and climate change and may raise awareness of scientist, farmers and decision makers about potential impact of both erosive forces. Knowledge about exact relationship is key for an adapted land use management, which has great potential to mitigate degradation processes related to climate change.
Style APA, Harvard, Vancouver, ISO itp.
7

Farsang, Andrea, Rainer Duttmann, Máté Bartus, József Szatmári, Károly Barta i Gábor Bozsó. "Estimation of Soil Material Transportation by Wind Based on in Situ Wind Tunnel Experiments". Journal of Environmental Geography 6, nr 3-4 (1.11.2013): 13–20. http://dx.doi.org/10.2478/jengeo-2013-0002.

Pełny tekst źródła
Streszczenie:
Abstract 25% and 40% of territory of Hungary is moderate to highly vulnerable to deflation. However, precise estimates about the soil loss and related losses of organic matter and nutrients due to wind erosion are missing in most cases. In order to determine magnitudes of nutrient masses removed at wind velocities that frequently occur in SE Hungary, in-situ experiments using a portable wind tunnel have been conducted on small test plots with an erosional length of 5.6 m and a width of 0.65 m. The wind tunnel experiments have been carried through on a Chernozem which is typical for this region. In order to compare the effects of soil coverage on the masses of blown soil sediment and adsorbed nutrients, two soil surface types have been tested under similar soil moisture und atmospheric conditions: (1) bare soil (dead fallow) and (2) bare soil surface interrupted by a row of maize plants directed downwind along the center line of the test plots. The results of our experiments clearly show that a constant wind velocity of 15 m s-1 (at a height of 0.3 m) lasting over a short time period of 10 minutes can already cause noticeable changes in the composition and size of soil aggregates at the top of the soil surface. Due to the grain size selectivity of the erosive forces the relative share of soil aggregates comprising diameters > 1 mm increased by 5-10% compared with the unaffected soil. Moreover it has shown that short time wind erosion events as simulated in this study can result in erosion rates between 100 and 120 g m-2, where the erosion rates measured for bare soils are only slightly, but not significantly higher than those of the loosely vegetated ones. Soil samples taken from sediment traps mounted in different heights close to the outlet of the wind tunnel point to an enrichment of organic matter (OM) of about 0.6 to 1 % by mass referred to the control samples. From these findings has been calculated that the relocation of organic matter within short term wind erosion events can amount to 4.5 to 5.0 g OM m-2. With the help of portable field wind tunnel experiments we can conclude that our valuable, high quality chernozems are struck by wind erosion mainly in drought periods.
Style APA, Harvard, Vancouver, ISO itp.
8

Podhrázská, J., i I. Novotný. "Evaluation of the wind erosion risks in GIS". Soil and Water Research 2, No. 1 (7.01.2008): 10–14. http://dx.doi.org/10.17221/2101-swr.

Pełny tekst źródła
Streszczenie:
The paper refers to the possibilities of the evaluation of the wind erosion risks by using a model created in GIS. The model exploits the pedological information database for determining the potential risks of soils by wind erosion. The following data are the database of the agricultural land use, meteorological data and the topographic maps for determining the direction of wind and climatic conditions. Using the data transferred to the graphic form, it is possible to create the digital terrain model and to regionalise the meteorological data. Consequently, the wind barriers are localised in the landscape and it is possible to create the zone of efficiency around each barrier (protecting the land from the erosive effects of the wind) according to the characteristics of their height and density.
Style APA, Harvard, Vancouver, ISO itp.
9

KARAOĞLU, Mücahit, i Erhan ERDEL. "SOIL PROPERTIES AND MAPPING OF THE ARALIK-IĞDIR WIND EROSION AREA-I (SURFACE)". Carpathian Journal of Earth and Environmental Sciences 18, nr 2 (30.06.2023): 277–88. http://dx.doi.org/10.26471/cjees/2023/018/258.

Pełny tekst źródła
Streszczenie:
In arid and semi-arid regions, one of the biggest problems for soil which is bare and/or has insufficient vegetation is wind erosion caused by strong winds. The second largest wind erosion area of Türkiye is in the province of Aralık-Iğdır. In this study, surface soil analysis of 40 km2 of the wind erosion area (clay,% silt,% sand, carbonate%, OM%, pH and EC), dry sieving analysis (4, 2, 1, 0.84, 0.42, 0.106, 0.020, <0.020 mm), erodible fraction (EF1%, EF2%), stability index (SI) and relative aggregation index (RSI) were determined. In addition, elevation, slope, silt, >0.84 mm, 0.106 mm, >0.020 mm, EF1, EF2, SI and RSI values as percentage were mapped using Geographic Information Systems (GIS). As a result, the texture classes of the wind erosion area of surface soils were determined as S-LS-SL, the carbonate percentages as 0.4-0.8, the organic matter percentages as 0.3-2.4, the pH values as 8.0-9.1, the electrical conductivity measurements as 0.03-0.12. In dry sieving processes; the resistant material (>0.84%) as 0-40, the erosive material (<0.84%) as 43-99; the erodible material percentages calculated with equations EF1 as 50-58, EF2 as 60-100; the stability index SI as 0-1 and the relative aggregation indices were RSI 0-11. It has been determined that the surface soils of all plots in the study area were sensitive to wind erosion, and that some plots were more sensitive.
Style APA, Harvard, Vancouver, ISO itp.
10

Scott, W. D. "Wind erosion of residue waste. Part I. Using the wind profile to characterise wind erosion". CATENA 21, nr 4 (marzec 1994): 291–303. http://dx.doi.org/10.1016/0341-8162(94)90042-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Wind erosion"

1

Oliveira, Henrique Balona de Sá. "Wind erosion of biochar-amended soil: a wind tunnel experiment". Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14312.

Pełny tekst źródła
Streszczenie:
Mestrado em Engenharia do Ambiente
Biochar application to soils has been reported in the scientific community as a possible means of improving agricultural productivity and, at the same time, as a powerful tool for carbon sequestration and climate change mitigation. However, current knowledge of biochar effects on soil functions and possible environmental threats is still not enough for a full-scale implementation. Erosion is one of the most serious and irreversible threats to soil and there is still no information if biochar may increase or decrease soil erosion rates. Soil erosion by wind is of particular interest for biochar, because of the low particle density and potential human exposure. The purpose of this study was to fill this knowledge gap by investigating the wind erosion potential of biochar-amended soil with a focus on the effect of soil moisture content, using a laboratory wind tunnel. Firstly, experimental tests were implemented in the DAO wind tunnel to define a robust wind erosion methodology in a facility only used for smoke studies. Sediment collecting methods, dust fraction analysis and wind velocity range were the main factors that required investigation. The erosion of biochar-amended soil (10% m m-1) and control soil (sandy soil) was simulated by positioning a tray divided in a sample area and an area for creeping particles, inside the test section of the wind tunnel. To determine the effect of soil moisture content on the erosion potential, four moisture contents were used: 0.2%, 1.7%, 4% and 8% (gravimetric). The wind tunnel simulations were performed with the duration of 15 minutes at a wind velocity of 7 m s-1. The samples of collected sediment were oven-dried and weighed to give the sediment loss as consequence of the erosion event. Results on the erosion simulations for control and biochar-amended soil with the wind flow velocity of 7 m s-1 (small erosion event) indicated that only biochar particles were displaced. Erosion of biochar-amended soil was similar for 0.2%, 1.7% and 4.0% and despite a sediment loss reduction of 50% from 4% MC to the higher MC, 8%, this latter was not identified as the threshold MC for the moment when erosion ceases to exist. As for mineral particles, after 4% MC there was no sediment collected indicating this MC as the threshold, even though a reduced mass of particles eroded for the smaller MCs. Further future tests are needed to build a more comprehensive understanding of wind erosion of biochar-amended soils. Relevant factors to include are: higher wind velocities representative of medium and high erosion events, as well as higher MCs to identify when erosion of biochar particles will stop completely. Secondly, based on the results found in the present study, other soil types and biochar types warrant further investigation. Studies like this contribute for the understanding of the effects of biochar application to soil functions, as well as the behaviour and fate of this material, which are indispensable for the development of adequate biochar regulations and policies.
A aplicação de biochar no solo tem sido referida na comunidade científica como um possível meio para melhorar a produtividade agrícola e, ao mesmo tempo, como um instrumento para sequestro de carbono e mitigação de alterações climáticas. Contudo, o conhecimento actual sobre os efeitos do biochar nas funções do solo e possíveis ameaças ambientais não é, ainda, suficiente para uma implementação em larga escala. A erosão é uma das mais sérias e irreversíveis ameaças ao solo e não existe, ainda, informação se o biochar pode aumentar ou reduzir os níveis de erosão. A erosão do solo pelo vento é de particular interesse para o biochar, devido à reduzida densidade das partículas e à potencial exposição humana. O objectivo deste trabalho foi preencher esta falha ao investigar o potencial de erosão do solo melhorado com biochar com enfoque no efeito do teor de humidade, usando um túnel de vento. Primeiramente, testes experimentais foram implementados no túnel de vento do DAO para definir uma metodologia robusta de erosão eólica numa estrutura, até então, apenas usada para estudos de dispersão de poluentes. A colecta do sedimento, análise de fracção de poeiras e a gama de velocidades foram os factores principais que necessitaram de investigação. A erosão de solo com biochar (10% m m-1) e de solo de controle (solo arenoso) foi simulada posicionando um tabuleiro dividido em área de amostra e área para partículas de rolamento, dentro da secção de teste do túnel de vento. Para determinar o efeito do teor de humidade do solo no potencial de erosão, quatro teores de humidade foram usados: 0.2%, 1.7%, 4% and 8% (gravimétricos). As simulações no túnel de vento foram realizadas com a duração de 15 minutos a uma velocidade do vento de 7 m s-1. As amostras de sedimento colectado foram secas e pesadas para fornecerem a perda de sedimento como consequência do evento de erosão. Os resultados das simulações de erosão para o controle e o solo melhorado com biochar, com a velocidade de 7 m s-1 (reduzido evento de erosão) indicaram que apenas partículas de biochar foram movidas. Erosão de solo com biochar foi semelhante para 0.2%, 1.7% and 4.0% e, apesar da redução da perda de sedimento em 50% do teor de 4% para para o teor mais alto, 8%, este último não foi identificado como sendo o limiar para o momento em que a erosão deixa de existir. Relativamente às partículas minerais, após o teor de 4% não houve sedimento colectado indicando este teor de humidade como o limiar, ainda que uma massa reduzida de partículas tenha sofrido erosão para teores mais reduzidos. Testes futuros são necessários para gerar um melhor conhecimento acerca de erosão de solo com biochar pelo vento. Factores relevantes a incluir são: maiores velocidades do vento, representativas de eventos de erosão médios e elevados, tal como maiores teores de humidade para identificar quando a erosão de partículas de biochar pára por completo. Em segundo lugar, com base nos resultados observados neste estudo, outro tipos de solo e biochar impõe mais investigação.Estudos como este contribuem para perceber os efeitos da aplicação de biochar nos solos, bem como o comportamento e destino deste material, que são indispensáveis para o desenvolvimento de regulamentos e políticas adequadas sobre biochar.
Style APA, Harvard, Vancouver, ISO itp.
2

Fernandes, Royston. "Wind erosion in presence of vegetation". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0194.

Pełny tekst źródła
Streszczenie:
La poussière minérale atmosphérique résultant de l’érosion éolienne des sols affecte le système terrestre. La distribution en taille (PSD) de cette poussière joue un rôle clé dans le bilan radiatif et la chimie atmosphérique, la formation des nuages et la productivité des écosystèmes terrestres et marins. Néanmoins les modèles climatiques peinent à reproduire précisément la PSD de la poussière émise. Ceci vient de la représentation imparfaite des mécanismes d’émission de poussières et des vitesses de vent de surface associées. C’est particulièrement vrai en présence d’éléments de rugosité de surface comme la végétation en régions semi-arides. Cette thèse vise à améliorer la compréhension de l’émission de poussière en environnements semi-arides, caractérisé par des surfaces hétérogènes liées à la végétation saisonnière éparse. A cette fin, une combinaison d’expériences numériques et de terrain a été employée, en partant d’un sol nu érodable à des surfaces couvertes de végétation éparse.Une revue des schémas existants a montré des ambiguïtés dans la paramétrisation des processus influençant l’émission de poussières. Une analyse de sensibilité utilisant un modèle 1D de dispersion de poussière a démontré l’importance (i) de la PSD de la poussière à la surface et de la paramétrisation de la cohésion interparticules qui affectent la PSD de la poussière émise, et (ii) des processus de dépôt qui influencent la PSD du flux net de poussière dans la couche de surface atmosphérique. A partir de cette analyse, un nouveau schéma d’émission a été incorporé à un modèle 3D d’érosion, couplé à un modèle turbulent Large Eddy Simulation (LES), et évalué d’abord sur une surface nue sur la base de l’expérimentation WIND-O-V 2017 en Tunisie. Le modèle a ainsi été capable de reproduire la dissimilarité entre les transports turbulents de poussière et de quantité de mouvement dans la couche de surface, observée durant l’expérience. Cela signifie que poussière et quantité de mouvement ne sont pas toujours transportées par les mêmes tourbillons. Le modèle a démontré que la cause principale de cette dissimilarité est l’intermittence de l’émission de poussières, qui varie avec l’intensité du vent et le fetch.L’impact de la végétation éparse sur le flux net de poussière émis a ensuite été étudié sur la base de l’expérimentation WIND-O-V 2018, conduite sur le même site que celle de 2017. Les mesures ont été utilisées pour évaluer le modèle 3D d’érosion incluant les caractéristiques de la végétation. La comparaison entre les expérimentations 2017 et 2018 a confirmé que la végétation éparse réduit l’émission en augmentant la vitesse de frottement seuil de l’érosion, qui dépend des caractéristiques de la végétation et de la direction du vent. Au cours de l’expérimentation 2018, nous avons observé que la PSD du flux net de poussière émis variait, contrairement à 2017, avec un appauvrissement progressif en grosses particules (1.50 µm). Il s’est avéré que cet appauvrissement n’était pas lié à la présence de végétation, mais à l'épuisement du sol en grosses particules en raison de périodes d’émission plus longues sans modification de la surface, comparé à 2017. Cette absence d’influence de la végétation a été validée par la similarité entre la PSD du flux de poussière au début de l’expérimentation 2018, quand la végétation était à sa hauteur maximum, et celle de 2017 sans végétation. Et elle a été confirmée par nos simulations qui montrent (i) une re-déposition négligeable des grosses particules sur la végétation durant les émissions, et (ii) un effet négligeable de la turbulence induite par la végétation sur la PSD du flux net de poussière émis.Notre modèle 3D d’érosion apparaît comme un outil prometteur pour caractériser les émissions de poussière sur des surfaces hétérogènes représentatives des régions semi-arides et pour établir des schémas d’émission de poussières pour les modèles climatiques en fonction des propriétés de rugosité de la surface
Atmospheric mineral dust resulting from aeolian soil erosion affects the Earth system. Their size-distribution (PSD) plays a key role on atmospheric radiation balance, cloud formation, atmospheric chemistry, and the productivity of terrestrial and marine ecosystems. However, climate models still fail to reproduce accurately the suspended dust PSD. This is explained by the poor representation of the dust emission mechanisms and the associated surface wind speed in these large-scale models. This is particularly true in the presence of surface roughnesses such as vegetation in semiarid regions. This thesis aims at improving the understanding of dust emission in semi-arid environments, characterized by heterogeneous surfaces with sparse seasonal vegetation. To this end, a combination of numerical and field experiments was employed, with investigations progressing from a bare erodible soil to surfaces with sparse vegetation.A review of the existing dust emission schemes showed ambiguities in the parametrization of the processes influencing the emitted dust. A sensitivity analysis, using a 1D dust dispersal model, demonstrated (i) the importance of surface dust PSD and inter-particle cohesive bond parametrization on the emitted dust PSD, and (ii) the importance of the deposition process on the net dust flux PSD. Based on this analysis, a new emission scheme was incorporated into a 3D erosion model, coupled with a Large Eddy Simulation (LES) airflow model, and evaluated first on a bare surface against the WIND-O-V’s 2017 field experiment in Tunisia. The model was able to reproduce the near-surface turbulent transport dissimilarity between dust and momentum observed during the experiment. This means that momentum and dust are not always transported by the same turbulent eddies. The model demonstrated that the main cause of this dissimilarity is the dust emission intermittency, which varies as a function of wind intensity and fetch.The role of sparse vegetation on the net emitted dust flux was then explored using the WIND-O-V’s 2018 experiment, conducted at the same site as the 2017 experiment. The resulting field measurements were used to evaluate the 3D erosion model, including vegetation characteristics. A comparison between the 2017 and 2018 experiments confirmed that sparse vegetation reduces dust emission by increasing the erosion threshold friction velocity, which depends on vegetation characteristics and wind direction relative to the vegetation arrangement. During the 2018 experiment, the net emitted dust flux PSD varied continuously, unlike the 2017 experiment, with a progressive impoverishment in coarse particles (1.50 μm). This impoverishment was found independent of the vegetation, and resulted from the depletion of coarse particles at the surface due to longer emission periods in 2018 without surface tillage or precipitation. This non-influence of vegetation on the dust flux PSD was validated by the similarity of the dust flux PSD at the beginning of the 2018 experiment, when the vegetation was at its maximum height, with the one of the 2017 experiment without vegetation. It was further confirmed by the simulations that demonstrated (i) negligible re-deposition of coarse particles on to vegetation during emission events, and (ii) negligible effect of the turbulence induced by the vegetation on the PSD of the net emitted dust flux.Our 3D erosion model appears as a promising tool for characterizing dust emissions over heterogeneous surfaces typical of semi-arid regions and for deriving dust emission schemes for climate models as a function of surface roughness properties
Style APA, Harvard, Vancouver, ISO itp.
3

Chane, Kon Laurent. "Wind erosion modelling of stockpiles and embankments". Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Visser, Saskia M. "Modelling nutrient erosion by wind and water in northern Burkina Faso /". Wageningen : Wageningen University and Research Centre, 2004. http://www.mannlib.cornell.edu/cgi-bin/toc.cgi?5046904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Smith, Stewart Ellis. "An instrument for measuring turbulence during wind erosion". Thesis, Smith, Stewart Ellis (1996) An instrument for measuring turbulence during wind erosion. PhD thesis, Murdoch University, 1996. https://researchrepository.murdoch.edu.au/id/eprint/52753/.

Pełny tekst źródła
Streszczenie:
While some of the properties of turbulence have long been measured under laboratory conditions, current instruments are not suitable for use in the sand-blasting conditions that arise during wind erosion. This thesis describes the design and construction of a new instrument for such conditions. The instrument measures three components of wind velocity using pressure techniques. The thesis presents background material regarding the characterisation of turbulent and eroding flows, the design of pressure probes, and the modelling of pressure propagation in tubes. A mathematical model is developed to allow compensation for the complex effect of the tubing systems. This permits measurement of turbulent velocity fluctuations of the order of 100Hz. Algorithms for real-time signal processing are described. The results of calibration and testing of the instrument are discussed.
Style APA, Harvard, Vancouver, ISO itp.
6

Ozturk, Mehmet. "The Factors Affecting Wind Erosion in Southern Utah". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7610.

Pełny tekst źródła
Streszczenie:
Wind erosion is a global issue and affecting millions of people in drylands by causing environmental issues (acceleration of snow melting), public health concerns (respiratory diseases), and socioeconomic problems (costs of damages and cleaning public properties after dust storms). Disturbances in drylands can be irreversible, thus leading to natural disasters such as the 1930s Dust Bowl. With increasing attention on aeolian studies, many studies have been conducted using ground-based measurements or wind tunnel studies. Ground-based measurements are important for validating model predictions and testing the effect and interactions of different factors known to affect wind erosion. Here, a machine-learning model (random forest) was used to describe sediment flux as a function of wind speed, soil moisture, precipitation, soil roughness, soil crusts, and soil texture. Model performance was compared to previous results before analyzing four new years of sediment flux data and including estimates of soil moisture to the model. The random forest model provided a better result than a regression tree with a higher variance explained (7.5% improvement). With additional soil moisture data, the model performance increased by 13.13%. With full dataset, the model provided an increase of 30.50% in total performance compared to the previous study. This research was one of the rare studies which represented a large-scale network of BSNEs and a long time series of data to quantify seasonal sediment flux under different soil covers in southern Utah. The results will also be helpful to the managers for controlling the effects on wind erosion, scientists to choose variables for further modeling or local people to increase the public awareness about the effects of wind erosion.
Style APA, Harvard, Vancouver, ISO itp.
7

Anderson, Robert Stewart. "Sediment transport by wind : saltation, suspension, erosion and ripples /". Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/6703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Armstrong, John C. "Wind erosion and long period climate change on Mars /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wu, Jianzhao. "Numerical simulation of wind erosion : application to dune migration". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC016/document.

Pełny tekst źródła
Streszczenie:
L’érosion éolienne est un phénomène complexe avec des interactions entre la couche limite atmosphérique, le transport des particules et la déformation des dunes. Dans cette thèse des simulations numériques de transport de particules solides sur des dunes fixes ou déformables sont effectuées. L’écoulement turbulent est calculé par des simulations des grandes échelles (LES) couplée avec une méthode de frontières immergées. Les particules solides sont tractées par une approche Lagrangienne. L’entraînement des particules, leur interaction avec la surface et leur dépôt sont pris en compte par des modèles physiques complets d’érosion. D’un point de vue numérique, une méthode de frontières immergées a été introduite pour simuler les écoulements turbulents sur des frontières mouvantes. Le nouveau solveur a été validé en effectuant des comparaison avec les résultats expérimentaux de Simoens et al. (2015) dans le cas d’une colline Gaussienne. D’un point de vue physique, des modèles complets ont été développés pour l’érosion éolienne en se basant sur les forces agissant sur les particules. Des modèles instantanés pour l’envol, le roulement et le glissement des particules sont développés pour initier le mouvement des particules. Leur rebond et le splash sont également pris en compte. Des équations Lagrangiennes sont utilisées pour simuler la trajectoire des particules solides dans l’air. Une équation de transport d’un lit de particules a également été développée pour les cas de glissement et de roulement des particules sur la surface. La déformation de la dune est effectuée en faisant le bilan des particules qui s’envolent et se déposent. Ces modèles ont été validés en comparant les résultats de simulation avec les résultats expérimentaux de Simoens et al. (2015) sur les profils de concentration autour d’une colline Gaussienne. Enfin, des simulations numériques d’une dune sinusoïdale déformable sont effectuées. La forme de la dune simulée est comparée avec les résultats expérimentaux de Ferreira and Fino (2012). Un bon agrément est obtenu a t = 2.0 min, par contre la hauteur de la dune est sous-estimée entre 4.0 min et 6.0 min. Les résultats numériques montrent que la zone de recirculation diminue progressivement quand la dune se déforme. L’érosion, due à l’envol et au splash, est important a l’avant de la dune tandis que les particules se déposent a l’arrière de la dune. Le modèle de splash a été modifié pour prendre en compte l’effet de la pente, ce qui a permis une meilleure estimation de la hauteur de la dune a t = 4.0 min
Wind erosion is a complex dynamic process consisting in an atmospheric boundary layer, aeolian particle transport, sand dune deformation and their intricate interactions. This thesis undertakes this problems by conducting three-dimensional numerical simulations of solid particle transport over a fixed or deformable sand dune. Turbulent flow is calculated by a developed numerical solver (Large-eddy simulation (LES) coupled with immersed boundary method (IBM)). Solid particle trajectories are tracked by a Lagrangian approach. Particle entrainment, particle-surface interactions and particle deposition are taken into account by physical comprehensive wind erosion models. Firstly, a new numerical solver has been developed to simulate turbulent flows over moving boundaries by introducing the IBM into LES. Two canonical simulation cases of a turbulent boundary layer flow over a Gaussian dune and over a sinusoidal dune are performed to examine the accuracy of the developed solver. Recirculation region characteristics, mean streamwise velocity profiles, Reynolds stress profiles as well as the friction velocity over the dune are presented. In the Gaussian case, a good agreement between experimental data and simulated results demonstrates the numerical ability of the improved solver. In the sinusoidal case, the developed solver with wall modeling over the immersed boundary shows a better performance than the pure one, when a relatively coarse grid is used. Secondly, physical comprehensive modeling of wind erosion is described in detail, based on the forces acting an individual particle. An instantaneous entrainment model for both lifting and rolling-sliding modes is proposed to initialize particle incipient motions. Lagrangian governing equations of aeolian particle motion are presented and used to simulate the trajectories of solid particles. Particularly, Lagrangian governing equations of bed-load particle motion are originally deduced and applied to model the particle rolling-sliding movement on the bed surface. In addition, particle-surface interactions are taken into account by probabilistic rebound/splash models. Thirdly, numerical simulations of particle transport over a fixed Gaussian dune and over a deformable sinusoidal dune are carried out. In the fixed Gaussian case, an overall good agreement on the particle concentration profiles over the dune between the simulated results and the experimental data of Simoens et al. (2015) preliminarily validates the ability and accuracy of the developed numerical solver coupled with physical comprehensive wind erosion models. In the deformable sinusoidal case, the simulated dune shapes are compared with the experimental ones of Ferreira and Fino (2012). A good agreement between them is observed at t = 2.0 min and an obvious underestimate of the dune shape is shown at t = 4.0 min and t = 6.0 min. By analyzing the simulated results, it is shown that the recirculation zone behind the dune is gradually reduced as the dune deforms and that windward erosion and lee side deposition is observed. It is also shown after testing that the splash entrainment is important for the lee side erosion. Moreover, a preliminary attempt is presented to apply an improved splash model with accounting for the bed slope effect to the simulation of sand dune deformation. A better performance on the simulated dune shape is achieved at t = 4.0 min in comparison with the experimental one
Style APA, Harvard, Vancouver, ISO itp.
10

Gonzales, Howell B. "Aerodynamics of wind erosion and particle collection through vegetative controls". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20382.

Pełny tekst źródła
Streszczenie:
Doctor of Philosophy
Biological & Agricultural Engineering
Mark E. Casada
Ronaldo G. Maghirang
Wind erosion is an important problem in many locations, including the Great Plains, that needs to be controlled to protect soil and land resources. This research was conducted to assess the effectiveness of vegetation (specifically, standing vegetation and tree barriers) as controls for wind erosion. Specific objectives were to: (1) measure sand transport and abrasion on artificial standing vegetation, (2) determine porosity and drag of a single row of Osage orange (Maclura pomifera) barrier, (3) assess effectiveness of Osage orange barriers in reducing dust, (4) predict airflow through standing vegetation, and (5) predict airflow and particle collection through Osage orange barriers. Wind tunnel tests were conducted to measure wind speed profiles, relative abrasion energies, and sand discharge rates for bare sand and for two vegetation heights (150 and 220 mm) at various densities of vegetation. Results showed that vegetation density was directly related to threshold velocity and inversely related to sand discharge. The coefficient of abrasion was adversely affected by saltation discharge but did not depend on wind speed. Field tests measured the aerodynamic and optical porosities of Osage orange trees using wind profiles and image analysis, respectively, and an empirical relationship between the two porosities was derived. Vertical wind profiles were also used to estimate drag coefficients. Optical porosity correlated well with the drag coefficient. Field measurements also showed a row of Osage orange barrier resulted in particulate concentration reduction of 15 to 54% for PM2.5 and 23 to 65% for PM10. A computational fluid dynamics (CFD) software (OpenFOAM) was used to predict airflow in a wind tunnel with artificial standing vegetation. Predicted wind speeds differed slightly from the measured values, possibly due to oscillatory motions of the standing vegetation not accounted for in the CFD simulation. OpenFOAM was also used to simulate airflow and particle transport through a row of Osage orange barrier. Predicted and measured wind speeds agreed well. Measured dust concentration reduction at two points (upwind and downwind) were also similar to the predicted results.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Wind erosion"

1

Buerkert, Barbara, Bruce E. Allison i Matthias Von Oppen, red. Wind Erosion in Niger. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1618-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

United States. Soil Conservation Service., red. Soil erosion by wind. [Washington, D.C.?]: U.S. Dept. of Agriculture, Soil Conservation Service, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Greeley, Ronald. Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge: Cambredge University Press, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

United States. Soil Conservation Service, red. Wind erosion and its control. E. Lansing, Mich: US Dept. of Agriculture, Soil Conservation Service, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ligotke, M. W. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel. Richland, Washington: Pacific Northwest Laboratory, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ligotke, M. W. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel. Richland, Wash: Pacific Northwest Laboratory, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Shao, Yaping. Physics and modelling of wind erosion. Dordrecht: Kluwer Academic, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Smith, Stewart Ellis. An instrument for measuring turbulence during wind erosion. Perth, W.A: Division of Environmental Science, Murdoch University, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Piper, Steven. Estimating the offsite household damages from wind erosion in the western United States. Washington, DC: U.S. Dept. of Agriculture, Economic Research Service, Resources and Technology Division, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Schlyter, Peter. Palaeo-wind abrasion in southern Scandinavia: Field and laboratory studies. Lund, Sweden: Lund University Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Wind erosion"

1

Blanco-Canqui, Humberto, i Rattan Lal. "Wind Erosion". W Principles of Soil Conservation and Management, 55–80. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-8709-7_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gromke, Christof, i Katrin Burri. "Wind Erosion". W Encyclopedia of Agrophysics, 997–1000. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3585-1_235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Funk, Roger, i Hannes Isaak Reuter. "Wind Erosion". W Soil Erosion in Europe, 563–82. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470859202.ch41.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Osman, Khan Towhid. "Wind Erosion". W Soil Degradation, Conservation and Remediation, 103–23. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7590-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zobeck, Ted M., i R. Scott Van Pelt. "Wind Erosion". W Soil Management: Building a Stable Base for Agriculture, 209–27. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2011.soilmanagement.c14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Knight, Jasper. "Wind Erosion". W Aeolian Geomorphology, 61–80. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781118945650.ch3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Parkin, Gary W., Walter H. Gardner, K. Auerswald, Johannes Bouma, Ward Chesworth, H. J. Morel‐Seytoux i Michael Brookfield. "Wind Erosion". W Encyclopedia of Soil Science, 835–38. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Singh, Rajendra. "Wind Erosion". W Soil and Water Conservation Structures Design, 297–322. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8665-9_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Blanco, Humberto, i Rattan Lal. "Wind Erosion". W Soil Conservation and Management, 73–88. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30341-8_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Blanco, Humberto, i Rattan Lal. "Wind Erosion Modeling". W Soil Conservation and Management, 89–102. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30341-8_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Wind erosion"

1

Wilson, Grace, Brian Gelder, Brent Dalzell, Daryl Herzmann i David Mulla. "The Daily Erosion Project - Incorporating Wind Erosion". W Soil Erosion Research Under a Changing Climate, January 8-13, 2023, Aguadilla, Puerto Rico, USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/soil.23064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wilson, Grace, Brian Gelder, Brent Dalzell, Daryl Herzmann i David Mulla. "The Daily Erosion Project - Incorporating Wind Erosion". W Soil Erosion Research Under a Changing Climate, January 8-13, 2023, Aguadilla, Puerto Rico, USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/soil.2023064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Michael A Sporcic i Edward L Skidmore. "75 Years of Wind Erosion Control: The History of Wind Erosion Prediction". W International Symposium on Erosion and Landscape Evolution (ISELE), 18-21 September 2011, Anchorage, Alaska. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lawrence J Hagen i (or initial) (or initial). "Updating Soil Surface Conditions during Wind Erosion Events Using the Wind Erosion Prediction System (WEPS)". W 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Qi, Yong-Qing, Ji-Yuan Liu, Hua-Ding Shi, Da-Fang Zhuang i Yun-Feng Hu. "Wind erosion gradient patterns of Mongolian Plateau". W 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Natalie S Wagenbrenner, Matthew J Germino, Brian K Lamb, Randy B Foltz i Peter R Robichaud. "Wind Erosion of Soils Burned by Wildfire". W International Symposium on Erosion and Landscape Evolution (ISELE), 18-21 September 2011, Anchorage, Alaska. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Du, Yarong, i Weiwei Chen. "Numerical simulation of the wind turbine erosion". W 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ic3me-15.2015.312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kirschner, M., T. Wobst, B. Rittmeister i Ch Mundt. "Erosion Testing of Thermal Barrier Coatings in a High Enthalpy Wind Tunnel". W ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25523.

Pełny tekst źródła
Streszczenie:
One of the major problems facing the users of aircraft engines and stationary gas turbines in dusty and dirty environments is erosion, causing engine performance deterioration. Thermal barrier coatings (TBCs) are often applied on metal engine components as combustor heat shields or tiles as well as turbine blades allowing enhanced operating temperatures and resulting in increased thermal efficiency of the turbine and also reduced fuel consumption and gaseous emission. Erosive attack by airborne dust or fly ash, coarse particles causes coating degradation resulting in lifing issues of engine components. In the present study an erosion test facility was used to simulate the mechanisms of coating degradation expected in gas turbines in a more realistic way closer to real engine conditions. A loading situation combining thermal gradient cycling and erosive media was used. The experiments has been performed with an arc heated plasma wind tunnel (total enthalpy up to 20 MJ/kg), which is available at the Institute for Thermodynamics at the University of the Federal Armed Forces in Munich, Germany. The experimental setup and the integration of the air jet erosion test rig into the existing plasma wind tunnel will be elucidated. Different plasma sprayed thermal barrier coating materials, including the standard TBC material yttria-stabilised zirconia, were investigated regarding their erosion resistance. For validation and verification, samples of nickel-based Mar-M 247 and INCO 718 alloys have been used.
Style APA, Harvard, Vancouver, ISO itp.
9

Nielsen, A. W., B. M. Sumer, J. Fredso/e i E. D. Christensen. "Scour Protection around Offshore Wind Turbines: Monopiles". W International Conference on Scour and Erosion (ICSE-5) 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41147(392)42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Donald K McCool, Brenton K Sharratt, Hans A Krauss i Ronald C McClellan. "Residue Characteristics for Wind and Water Erosion Control". W 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.30035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Wind erosion"

1

Ligotke, M. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/6377761.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ziegler, Nancy, Nicholas Webb, Adrian Chappell i Sandra LeGrand. Scale invariance of albedo-based wind friction velocity. Engineer Research and Development Center (U.S.), maj 2021. http://dx.doi.org/10.21079/11681/40499.

Pełny tekst źródła
Streszczenie:
Obtaining reliable estimates of aerodynamic roughness is necessary to interpret and accurately predict aeolian sediment transport dynamics. However, inherent uncertainties in field measurements and models of surface aerodynamic properties continue to undermine aeolian research, monitoring, and dust modeling. A new relation between aerodynamic shelter and land surface shadow has been established at the wind tunnel scale, enabling the potential for estimates of wind erosion and dust emission to be obtained across scales from albedo data. Here, we compare estimates of wind friction velocity (u*) derived from traditional methods (wind speed profiles) with those derived from the albedo model at two separate scales using bare soil patch (via net radiometers) and landscape (via MODIS 500 m) datasets. Results show that profile-derived estimates of u* are highly variable in anisotropic surface roughness due to changes in wind direction and fetch. Wind speed profiles poorly estimate soil surface (bed) wind friction velocities necessary for aeolian sediment transport research and modeling. Albedo-based estimates of u* at both scales have small variability because the estimate is integrated over a defined, fixed area and resolves the partition of wind momentum be-tween roughness elements and the soil surface. We demonstrate that the wind tunnel-based calibration of albedo for predicting wind friction velocities at the soil surface (us*) is applicable across scales. The albedo-based approach enables consistent and reliable drag partition correction across scales for model and field estimates of us* necessary for wind erosion and dust emission modeling.
Style APA, Harvard, Vancouver, ISO itp.
3

Ligotke, M. W., i D. C. Klopfer. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel. Office of Scientific and Technical Information (OSTI), sierpień 1990. http://dx.doi.org/10.2172/6603562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chapman, Elaine G., Jeremy P. Rishel, Frederick C. Rutz, Timothy E. Seiple, Rob K. Newsom i K. Jerry Allwine. Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion. Office of Scientific and Technical Information (OSTI), wrzesień 2006. http://dx.doi.org/10.2172/895176.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ligotke, M. W., G. W. Dennis i L. L. Bushaw. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites. Office of Scientific and Technical Information (OSTI), październik 1993. http://dx.doi.org/10.2172/10190697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Edwards, Lulu, Charles Weiss, J. Newman, Fred Nichols, L. Coffing i Quint Mason. Corrosion and performance of dust palliatives : laboratory and field studies. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/42125.

Pełny tekst źródła
Streszczenie:
This report details laboratory and field experiments on BioPreferred® dust suppressants to assess performance and corrosion characteristics. Numerous bio-based dust suppressant products are marketed, but little data are available to assess performance for dust abatement and corrosion of common metals. A laboratory study used an air impingement device and the Portable In-Situ Wind ERosion Laboratory (PI-SWERL) to simulate wind speeds similar to those in field conditions for rotary wing aircraft. Laboratory corrosion studies used metal coupons imbedded in soil treated with dust palliative. Field trials were conducted using ground vehicle traffic to minimize cost and lower safety concerns while increasing surface wear from repetitive traffic. These studies clearly show that bio-based products demonstrate low corrosion potential with similar dust abatement performance to synthetic-based agents.
Style APA, Harvard, Vancouver, ISO itp.
7

Ligotke, M. W. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report. Office of Scientific and Technical Information (OSTI), grudzień 1988. http://dx.doi.org/10.2172/6631013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rosse, Anine. Stream channel monitoring for Wind Cave National Park 2021 Data report. National Park Service, styczeń 2023. http://dx.doi.org/10.36967/2296623.

Pełny tekst źródła
Streszczenie:
The Northern Great Plains Inventory and Monitoring Network (NGPN) began stream channel monitoring in Highland Creek at Wind Cave National Park (WICA) in 2021. This data report summarizes the data collected during the 2021 season pertaining to watershed, reach, and physical habitat. After data are collected for at least four cycles, trends may be reported. This report covers three main areas: 1) Reporting on upland channel characteristics data that may affect habitat such as: land cover, drainage area, and total stream length; 2) Reporting of geomorphic dimensions such as: channel widths, bank angles, vegetative cover, reach slope, measures of bank stability; and 3) Determining physical habitat characteristics such as: size and distribution of bed sediment, large woody debris, and canopy cover. Indices, benchmarks, and other studies are provided in the table for informational purposes to help put Highland Creek’s measurements in context but should not be considered as a reference condition. Upland characteristics of the watershed indicate high natural land use cover (forest, grassland, and shrubland) with little development in the area. Reach characteristics include bank cover, heights, bank stability index, and vegetative cover. In addition to animal-induced erosion of the banks, bank sloughing and widening are occurring. Angles are steep, and there are some sandy banks that are unstable. When plots are revisited in three years, there will be greater understanding of the processes at play and the condition of the stream. Physical characteristics include median particle size, percentage fine substrate, geomorphic units, and canopy cover. Gravel substrate still covers much of the stream; there are wide meanders in the stream bed; and a variety of geomorphic channel units (pool, riffle, run) occur in the creek all of which are indicators of healthy habitat. While there is an absence of large woody debris and canopy cover is low, many grassland streams in good condition can have similar characteristics. More data are needed to fully assess those components and determine a suitable reference condition that can be used to later assess the status and trends of Highland Creek. The reach data contained in this report are specific to a short 150-m segment of Highland Creek and cannot be extrapolated to conditions elsewhere in the creek or to the park in general. Bank erosion and bank instability were observed along the majority of transects at site WICA SCM 001.
Style APA, Harvard, Vancouver, ISO itp.
9

Arkema, Katie, Allison Bailey, Roberto Guerrero Compeán, Pelayo Menéndez Fernandez i Borja Reguero. Modeling Tropical Cyclone Risk While Accounting for Climate Change and Natural Infrastructure in the Caribbean. Inter-American Development Bank, lipiec 2023. http://dx.doi.org/10.18235/0004966.

Pełny tekst źródła
Streszczenie:
This chapter describes tools and a methodology to model wind and flood risks from tropical storms under present and future climate accounting for natural infrastructure. Wind forcing provide a crucial link to hydrodynamic models that can be used in risk assessments to estimate extent of and damages from flooding and erosion. Further, such flood risk models can then include the effects of ecosystems, such as mangroves, to model the effects on risk of conservation and restoration outcomes but also individual nature-based projects to reduce risks. The chapter describes hazard modeling techniques and presents simple applications to (1) assess the effect of climate change in the Caribbean, by estimating wind fields for tropical cyclones for present and future climate scenarios, (2) address the limited observations in hurricane data by using existing tools to derive synthetic storms and readily use them in coastal models, and (3) compare modeling approaches and datasets to provide recommendations for assessing flood attenuation of mangroves. The results and data developed in these applications is available with this chapter to be used in other local applications, or to infer damages from wind or in flood hazard models.
Style APA, Harvard, Vancouver, ISO itp.
10

Hart, Kate, Jodi Lejeune, Rebecca Beavers, Sam Whitin, Christopher Overcash, Monique LaFrance Bartley i Suzie Boltz. National Park Service beach nourishment guidance (second edition). National Park Service, maj 2023. http://dx.doi.org/10.36967/2299256.

Pełny tekst źródła
Streszczenie:
Sandy coastal areas (including coastal dunes, beaches, and submerged intertidal and nearshore areas) are naturally dynamic ecosystems. These areas experience accretion, erosion, dune and island migration, overwash, and other processes as sediments are transported by the wind, waves, tides, and currents. If these natural physical processes are disrupted, the beach ecosystem may transform, become unstable, or disappear completely over time. Human development of coastal areas, sea level rise, and increasing frequency and intensity of coastal storms are examples of coastal change that interfere with sediment transport and therefore threaten the stability of coastal ecosystems. Beach nourishment is a nature-based engineering strategy that artificially delivers sand (a size of sediment) to a coastal ecosystem to lessen the disruption of sediment supply. Generally, beach nourishment is intended to mitigate erosion, protect infrastructure and buildings, and/or to restore habitat. The National Park Service (NPS) has produced an updated guidance manual that provides a consistent approach to beach nourishment based on sound coastal science and engineering. The goal of this updated guidance is to provide information on this method to protect and preserve the beaches and associated resources of the National Park System.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii