Gotowa bibliografia na temat „Wind”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wind”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wind"
Mandelbaum, R. "Reap the wild wind [offshore wind farm]". IEEE Spectrum 39, nr 10 (październik 2002): 34–39. http://dx.doi.org/10.1109/mspec.2002.1038567.
Pełny tekst źródłaMatsyura, Alex, Kazimierz Jankowski i Marina Matsyura. "BIRDS’ FLIGHT ENERGY PREDICTIONS AND APPLICATION TO RADAR-TRACKING STUDY". Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3, nr 03 (28.10.2013): 135. http://dx.doi.org/10.15421/20133_45.
Pełny tekst źródłaBradley, Stuart, i Alexander Strehz. "Corrections to sodar Doppler winds due to wind drift". Meteorologische Zeitschrift 24, nr 6 (5.11.2015): 605–14. http://dx.doi.org/10.1127/metz/2014/0627.
Pełny tekst źródłaEdwards, Susan. "The wild west wind". Women & Performance: a journal of feminist theory 10, nr 1-2 (styczeń 1999): 277–90. http://dx.doi.org/10.1080/07407709908571306.
Pełny tekst źródłaAndreas, Edgar L., i Larry Mahrt. "On the Prospects for Observing Spray-Mediated Air–Sea Transfer in Wind–Water Tunnels". Journal of the Atmospheric Sciences 73, nr 1 (21.12.2015): 185–98. http://dx.doi.org/10.1175/jas-d-15-0083.1.
Pełny tekst źródłaKhaghaninia, S., S. Mohammadi, A. Srafrazi, K. Nejad i R. Zahiri. "Geometric Morphometric Study on Geographic Dimorphism of Coding Moth Cydia Pomonella (Lepidoptera, Tortricidae) from North West of Iran". Vestnik Zoologii 45, nr 5 (1.01.2011): e-20-e-28. http://dx.doi.org/10.2478/v10058-011-0028-z.
Pełny tekst źródłaRehman, Shafiqur, Kashif Irshad, Nasiru I. Ibrahim, Ali AlShaikhi i Mohamed A. Mohandes. "Offshore Wind Power Resource Assessment in the Gulf of North Suez". Sustainability 15, nr 21 (25.10.2023): 15257. http://dx.doi.org/10.3390/su152115257.
Pełny tekst źródłaWiegel, R. L. "WIND WAVES AND SWELL". Coastal Engineering Proceedings 1, nr 7 (29.01.2011): 1. http://dx.doi.org/10.9753/icce.v7.1.
Pełny tekst źródłaXue, Yiwei, i Miao Wei. "Travel with the Wild Wind". Chinese Literature Today 9, nr 2 (2.07.2020): 46–47. http://dx.doi.org/10.1080/21514399.2020.1851964.
Pełny tekst źródłaDillon, Dennis. "Making the Wild Wind Visible". Journal of Library Administration 28, nr 1 (czerwiec 1999): 47–61. http://dx.doi.org/10.1300/j111v28n01_05.
Pełny tekst źródłaRozprawy doktorskie na temat "Wind"
Ndzukuma, Sibusiso. "Statistical tools for wind energy generation". Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1020627.
Pełny tekst źródłaBezerra, Rufino Ferreira Paiva Eduardo. "Wind Velocity Estimation for Wind Farms". Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLM046.
Pełny tekst źródłaThis thesis designs algorithms to estimate the wind speed and direction for wind turbines and wind farms.First, we propose data-based methods to estimate the Rotor Effective Wind Speed (REWS) for a single turbine without prior knowledge of certain physical parameters of the turbine that might be unknown to an operator.We provide two data-based methods, based respectively on Gaussian Process Regression (GPR) and on an combination of GPR with high-gain observers.Second, grounding on this REWS estimation at the local level of one turbine, we address the question of estimating the free-flow wind at the level of a wind farm.We start by focusing on wind speed estimation, for a given known wind direction. For a wind farm with a simple geometry, we prove that a local speed measurement disturbed by the presence of the turbines can be used to estimate the free-flow wind speed. We ground our estimation methodology on a simplified wake model, which consists of first-order hyperbolic partial differential equations, the transport speed of which is the free-flow wind speed. We propose to use an analytical solution of these equations, involving transport delays, to perform an estimate of the local measurement and to update the free-flow wind speed estimate. We formally prove the convergence of this estimate and numerically illustrate the efficiency of this method.Finally, we move to a more general setup where both the free-flow wind speed and direction are unknown. We propose to use a two-dimensional wake model and to rely on an optimization-based method. This identification problem reveals to be particularly challenging due to the appearance of transport delays, but we illustrate how to circumvent this issue by considering an average value of the free flow wind speed history. Simulation results obtained with the simulator FAST.Farm illustrate the interest of the proposed method
Haag, Christian. "Temporal and spatial wind field distribution in Delaware Bay". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 9.11 Mb., 62 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1430767.
Pełny tekst źródłaPrincipal faculty advisors: Kenneth E. Barner, Dept. of Electrical and Computer Engineering; and Mohsen Badiey, Dept. of Marine and Earth Studies. Includes bibliographical references.
Duhaut, Thomas H. A. "Wind-driven circulation : impact of a surface velocity dependent wind stress". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101117.
Pełny tekst źródłaThe ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses.
Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.
SILVA, ILITCH VITALI GOMES DA. "THE WIND FORECAST FOR WIND POWER GENERATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16824@1.
Pełny tekst źródłaA energia eólica é uma das alternativas mais promissoras para geração de energia elétrica, pois assegura a diversidade e segurança no fornecimento de energia e atende à necessidade premente de reduzir os níveis de emissão de gases poluentes. Na operação de sistemas elétricos com forte presença de geração eólica é fundamental prever com pelo menos um dia de antecedência os valores futuros (pelo menos horários) da veloci-dade do vento, pois assim pode-se avaliar a disponibilidade de energia para o próximo dia, uma informação útil no despacho das unidades geradoras e no controle do sistema elétrico. A proposta dessa dissertação objetiva especificamente desenvolver modelos de previsão de curto prazo da velocidade do vento, baseado em técnicas de inteligência artificial, modelo da rede neural artificial e neuro-fuzzy adaptativa (ANFIS) e um mode-lo Estatístico composto por um modelo de regressão harmônica e Box-Jenkins. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sis-tema Nacional de Dados Ambientais para o setor de energia). O desempenho dos mode-los rede neural, neuro-fuzzy (ANFIS) e modelo Estatístico são comparados nas previ-sões de 6 horas, 12 horas, 18 h e 24horas a frente. Os resultados obtidos mostram o me-lhor desempenho da modelagem ANFIS e encorajam novos estudos no tema.
Wind power is one of the most promising options for power generation. It ensures the diversity and security of energy supply and meets the pressing need to reduce the levels of emission of polluting gases. In the operation of electrical systems with a strong presence of wind generation, it is essential to provide at least one day in advance the future values (at least hourly) of wind speed, so that we can assess the availability of energy for the next day, a useful information in the order of the generating units and electrical control system. The purpose of this dissertation aims to develop models spe-cifically to develop models to forecast short-term wind speed, based on artificial intelligence techniques, artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statistical model composed of a harmonic regression model and Box-Jenkins. For application of the methodology, the city of São João do Cariri (State of Paraíba), where a reference station of SONDA project (National Environmental Data for the energy sector) is located, was considered.To apply the methodology was consi-dered the city of the ray tracing model (State of Paraíba), which is located a station ref-erence design (National Environmental Data for the energy sector). The performance of artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statis-tical model are compared mixed forecasts of 6 hours, 12 hours, 18hours and 24 hours ahead. The results show the best performance of the ANFIS model and encourage fur-ther studies on the subject.
Hickle, Curtis. "Wind Tunnel renovation, flow verification and flapping wing analysis". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FHickle.pdf.
Pełny tekst źródłaThesis Advisor(s):Dr. Kevin Jones and Dr. Garth Hobson. "June 2006." Includes bibliographical references (p.79-81). Also available in print.
Paul, Matthew G. "Wing Deflection Analysis of 3D Printed Wind Tunnel Models". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1751.
Pełny tekst źródłaFridén, Tobias. "Robust Autonomous Landing of Fixed-Wing UAVs in Wind". Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165136.
Pełny tekst źródłaLi, Simeng. "WIND ARRAY PERFORMANCE EVALUATION MODEL FOR LARGE WIND FARMS AND WIND FARM LAYOUT OPTIMIZATION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1405080318.
Pełny tekst źródłaShelley, Dena L. "A wind energy landscape : the Searsburg Wind Park". Virtual Press, 2008. http://liblink.bsu.edu/uhtbin/catkey/1390311.
Pełny tekst źródłaDepartment of Landscape Architecture
Książki na temat "Wind"
Lowell, Elizabeth. Sweet wind, wild wind. Sutton: Severn House, 2010.
Znajdź pełny tekst źródłaMaxwell, Ann. Sweet wind, wild wind. Waterville, Me: Wheeler Pub., 2004.
Znajdź pełny tekst źródłaCorp, Windsor Publishing, i Copyright Paperback Collection (Library of Congress), red. Wild wind! New York, NY: Windsor Pub. Corp., 1993.
Znajdź pełny tekst źródłaThompson, Victoria. Wild Texas wind. New York: Zebra Books, 1992.
Znajdź pełny tekst źródłaThompson, Victoria. Wild Texas wind. New York: Zebra Books, 1992.
Znajdź pełny tekst źródłaill, Kiesler Kate, red. Wind-wild dog. New York: Henry Holt and Company, 2006.
Znajdź pełny tekst źródłaBuck, Gayle. Wild tiger wind. Uhrichsville, Ohio: Heartsong Presents, 1999.
Znajdź pełny tekst źródłaCrowe, Evelyn A. A wild wind. Richmond, Surrey: Worldwide, 1990.
Znajdź pełny tekst źródłaVerrette, Joyce. Sweet wild wind. London: Futura, 1986.
Znajdź pełny tekst źródłaVerrette, Joyce. Sweet wild wind. London: Macdonald, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Wind"
Lenschow, Donald H. "Wind and Wind Fluctuations". W Advances in Berthing and Mooring of Ships and Offshore Structures, 173–86. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1407-0_7.
Pełny tekst źródłaPétrequin, Pierre. "North Wind, South Wind". W Technological Choices, 36–76. London: Routledge, 2013. http://dx.doi.org/10.4324/9781315887630-1.
Pełny tekst źródłaCampbell, Gaylon S., i John M. Norman. "Wind". W An Introduction to Environmental Biophysics, 63–75. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1626-1_5.
Pełny tekst źródłaZlomusica, Elvir. "Wind". W Handbook of Sustainable Engineering, 1109–42. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8939-8_119.
Pełny tekst źródłaHeckel, Pamela E. "Wind". W SpringerBriefs in Environmental Science, 61–66. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9701-6_7.
Pełny tekst źródłaKrupar III, Richard J. "Wind". W Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-51727-8_133-1.
Pełny tekst źródłaKrupar III, Richard J. "Wind". W Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1179–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-52090-2_133.
Pełny tekst źródłaHimoto, Keisuke. "Wind". W Large Outdoor Fire Dynamics, 11–27. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003096689-2.
Pełny tekst źródłaWilcox, Alison, i Adam Bushnell. "Wind". W Descriptosaurus Story Writing, 47–49. Subjects: LCSH: Creative writing (Elementary education) | Description (Rhetoric)–Study and teaching (Elementary) | Vocabulary–Study and teaching (Elementary): Routledge, 2020. http://dx.doi.org/10.4324/9781003095675-14.
Pełny tekst źródłaWeller, Bernhard, Marc-Steffen Fahrion, Sebastian Horn, Thomas Naumann i Johannes Nikolowski. "Wind". W Baukonstruktion im Klimawandel, 265–82. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13011-4_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Wind"
Colidiuc, Alexandra, Stelian Galetuse, Bogdan Suatean, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Wind Generator with Oscillating Wing". W ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498268.
Pełny tekst źródłaStreatfeild, C. "Offshore wind: scale of opportunity". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0066.
Pełny tekst źródłaBriggs, C. "Proactive turbine maintenance integrated support for wind turbine operations". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0067.
Pełny tekst źródłaHendriks, B. "Megaturbines: an engineering background to the historic growth in turbine size and future developments". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0068.
Pełny tekst źródłaPlet, C. "Power frequency optimisation". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0069.
Pełny tekst źródłaMacLeod, N. "DC Transmission". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0070.
Pełny tekst źródłaJones, C. "JACOBS: cable technology in offshore transmission". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0071.
Pełny tekst źródła"Specialising in the impossible: reducing repair times in offshore wind O&M". W Offshore Wind Technology. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0072.
Pełny tekst źródłaJohnson, Steven C. "Space Shuttle Wind Profiler". W Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/clr.1991.tud3.
Pełny tekst źródłaLaupattarakasem, Peth, W. Linwood Jones i Christopher C. Hennon. "SeaWinds Hurricane Wind Retrievals and Comparisons with H*Wind Surface Winds Analyses". W 2008 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4778849.
Pełny tekst źródłaRaporty organizacyjne na temat "Wind"
Friehe, Carl A., i Jesus Ruiz-Plancarte. Wind and Wind Stress Measurements in HiRes. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada533833.
Pełny tekst źródłaCris Hein, Michael Schirmacher, Ed Arnett i Manuela Huso. Win(d)-Win(d) Solutions for wind developers and bats. Office of Scientific and Technical Information (OSTI), październik 2011. http://dx.doi.org/10.2172/1038838.
Pełny tekst źródłaMichalakakis, Charalampos, i Jack Miller. Developments in wind power. Parliamentary Office of Science and Technology, maj 2019. http://dx.doi.org/10.58248/pn602.
Pełny tekst źródłaShahidehpour, Mohammad. WINS. Market Simulation Tool for Facilitating Wind Energy Integration. Office of Scientific and Technical Information (OSTI), październik 2012. http://dx.doi.org/10.2172/1188373.
Pełny tekst źródłaInghram, M. G. Wind data from Point MacKenzie Wind Station, 1983. Alaska Division of Geological & Geophysical Surveys, 1988. http://dx.doi.org/10.14509/1375.
Pełny tekst źródłaInghram, M. G. Wind data from Point MacKenzie Wind Station, 1984. Alaska Division of Geological & Geophysical Surveys, 1988. http://dx.doi.org/10.14509/1376.
Pełny tekst źródłaInghram, M. G. Wind data from Point MacKenzie Wind Station, 1985. Alaska Division of Geological & Geophysical Surveys, 1988. http://dx.doi.org/10.14509/1377.
Pełny tekst źródłaInghram, M. G. Wind data from Point MacKenzie Wind Station, 1986. Alaska Division of Geological & Geophysical Surveys, 1988. http://dx.doi.org/10.14509/1378.
Pełny tekst źródłaDavid C. Morris i Dr. Will D. Swearingen. Wind Fins: Novel Lower-Cost Wind Power System. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/917314.
Pełny tekst źródłaSmith, Ken, i John Wolar. Wind Resource Assessment and Requested Wind Turbine Recommendations. Office of Scientific and Technical Information (OSTI), październik 2012. http://dx.doi.org/10.2172/1345828.
Pełny tekst źródła