Artykuły w czasopismach na temat „Wide-band Input Matching”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Wide-band Input Matching”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Zhe-Yang, Chun-Chieh Chen i Chung-Chih Hung. "Low-noise amplifier with narrow-band and wide-band input impedance matching design". Journal of the Chinese Institute of Engineers 38, nr 5 (25.02.2015): 603–9. http://dx.doi.org/10.1080/02533839.2015.1010452.
Pełny tekst źródłaGalante-Sempere, David, Javier del Pino, Sunil Lalchand Khemchandani i Hugo García-Vázquez. "Miniature Wide-Band Noise-Canceling CMOS LNA". Sensors 22, nr 14 (13.07.2022): 5246. http://dx.doi.org/10.3390/s22145246.
Pełny tekst źródłaBEN AMOR, MERIAM, MOURAD LOULOU, SEBASTIEN QUINTANEL i DANIEL PASQUET. "A FULLY INTEGRATED MULTIBAND CMOS 0.35 μM LNA FOR IEEE802.16 STANDARD". Journal of Circuits, Systems and Computers 22, nr 02 (luty 2013): 1250088. http://dx.doi.org/10.1142/s0218126612500880.
Pełny tekst źródłaHu, Robert, i Mark S. C. Yang. "Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design". International Journal of Infrared and Millimeter Waves 26, nr 2 (luty 2005): 221–45. http://dx.doi.org/10.1007/s10762-005-3002-4.
Pełny tekst źródłaSeethur, Rashmi, Siva Yellampalli i Shreedhar H. K. "Design of Common Gate Current-Reuse Noise Cancellation UWB Low Noise Amplifier in 90nm CMOS". International Journal of Electronics, Communications, and Measurement Engineering 11, nr 1 (1.01.2022): 1–14. http://dx.doi.org/10.4018/ijecme.312257.
Pełny tekst źródłaALAVI-RAD, HOSEIN, SOHEYL ZIABAKHSH i MUSTAPHA C. E. YAGOUB. "A 1.2 V CMOS COMMON-GATE LOW NOISE AMPLIFIER FOR UWB WIRELESS COMMUNICATIONS". Journal of Circuits, Systems and Computers 22, nr 07 (sierpień 2013): 1350052. http://dx.doi.org/10.1142/s0218126613500527.
Pełny tekst źródłaHeo, Bo-Ram, i Ickjin Kwon. "A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting". Sensors 21, nr 22 (10.11.2021): 7483. http://dx.doi.org/10.3390/s21227483.
Pełny tekst źródłaPINO, J. DEL, SUNIL L. KHEMCHANDANI, ROBERTO DÍAZ-ORTEGA, R. PULIDO i H. GARCÍA-VÁZQUEZ. "ON-CHIP INDUCTORS OPTIMIZATION FOR ULTRA WIDE BAND LOW NOISE AMPLIFIERS". Journal of Circuits, Systems and Computers 20, nr 07 (listopad 2011): 1231–42. http://dx.doi.org/10.1142/s0218126611007852.
Pełny tekst źródłaBonenberger, Christopher M. A., i Klaus W. Kark. "A Broadband Impedance-Matching Method for Microstrip Patch Antennas Based on the Bode-Fano Theory". Frequenz 72, nr 7-8 (26.06.2018): 373–80. http://dx.doi.org/10.1515/freq-2018-0037.
Pełny tekst źródłaHu, Shan Wen, Tao Chen, Huai Gao, Long Xing Shi i G. P. Li. "An Advanced Traveling Wave Matching Network for DC-12GHz Variable Gain Amplifier Design". Applied Mechanics and Materials 321-324 (czerwiec 2013): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.331.
Pełny tekst źródłaElmeligy, Karim, i Hesham Omran. "Fast Design Space Exploration and Multi-Objective Optimization of Wide-Band Noise-Canceling LNAs". Electronics 11, nr 5 (5.03.2022): 816. http://dx.doi.org/10.3390/electronics11050816.
Pełny tekst źródłaLee, J. Y., J. H. Ham, Y. S. Lee i T. Y. Yun. "CMOS LNA for full-band ultra-wideband systems using a simple wide input matching network". IET Microwaves, Antennas & Propagation 4, nr 12 (2010): 2155. http://dx.doi.org/10.1049/iet-map.2010.0096.
Pełny tekst źródłaRibate, Mohamed, Rachid Mandry, Jamal Zbitou, Larbi El Abdellaoui, Ahmed Errkik, Mohamed Latrach i Ahmed Lakhssassi. "Design of L-S band broadband power amplifier using microstip lines". International Journal of Electrical and Computer Engineering (IJECE) 10, nr 5 (1.10.2020): 5400. http://dx.doi.org/10.11591/ijece.v10i5.pp5400-5408.
Pełny tekst źródłaSung, Ha-Wuk, Seong-Hee Han, Seong-Il Kim, Ho-Kyun Ahn, Jong-Won Lim i Dong-Wook Kim. "C-Band GaN Dual-Feedback Low-Noise Amplifier MMIC with High-Input Power Robustness". Journal of Electromagnetic Engineering and Science 22, nr 6 (30.11.2022): 678–85. http://dx.doi.org/10.26866/jees.2022.6.r.137.
Pełny tekst źródłaAbbasizadeh, Hamed, Arash Hejazi, Behnam Samadpoor Rikan, Sang Yun Kim, Jongseok Bae, Jong Min Lee, Jong Ho Moon i in. "A High-Efficiency and Wide-Input Range RF Energy Harvester Using Multiple Rectenna and Adaptive Matching". Energies 13, nr 5 (25.02.2020): 1023. http://dx.doi.org/10.3390/en13051023.
Pełny tekst źródłaChang, Yi Cheng, Meng Ting Hsu i Yu Chang Hsieh. "Design of 3.1-10.6GHz CMOS LNA Based on Input Matching Technique of Common-Gate Topology". Applied Mechanics and Materials 479-480 (grudzień 2013): 1014–17. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.1014.
Pełny tekst źródłaLi, J. Y., W. J. Lin, M. P. Houng i L. S. Chen. "A Low Power Consumption and Wide-Band Input Matching CMOS Active Balun for UWB System Applications". Journal of Electromagnetic Waves and Applications 24, nr 11-12 (1.01.2010): 1449–57. http://dx.doi.org/10.1163/156939310792149641.
Pełny tekst źródłaHu, R. "An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism". IEEE Microwave and Wireless Components Letters 14, nr 11 (listopad 2004): 528–30. http://dx.doi.org/10.1109/lmwc.2004.837063.
Pełny tekst źródłaRamya, T. Rama Rao i Revathi Venkataraman. "Concurrent Multi-Band Low-Noise Amplifier". Journal of Circuits, Systems and Computers 26, nr 06 (5.03.2017): 1750104. http://dx.doi.org/10.1142/s0218126617501043.
Pełny tekst źródłaGao, Mingming, Gaoyang Xu i Jingchang Nan. "Design of Concurrent Tri-Band High-Efficiency Power Amplifier Based on Wireless Applications". Electronics 11, nr 21 (30.10.2022): 3544. http://dx.doi.org/10.3390/electronics11213544.
Pełny tekst źródłaNaumovich, N. M., A. P. Joubko, M. V. Davydov i O. S. Maltsev. "WIDEBAND TRANSFORMER FOR MATCHING OF LOW-IMPEDANCE LOADS IN VERY HIGH FREQUENCY RANGE". Doklady BGUIR, nr 7-8 (29.12.2019): 43–49. http://dx.doi.org/10.35596/1729-7648-2019-126-8-43-49.
Pełny tekst źródłaManjula, S., M. Malleshwari i M. Suganthy. "Design of Low Power UWB CMOS Low Noise Amplifier using Active Inductor for WLAN Receiver". International Journal of Engineering & Technology 7, nr 2.24 (25.04.2018): 448. http://dx.doi.org/10.14419/ijet.v7i2.24.12132.
Pełny tekst źródłaDoo, Jihoon, Jongyoun Kim i Jinho Jeong. "D-Band Frequency Tripler Module Using Anti-Parallel Diode Pair and Waveguide Transitions". Electronics 9, nr 8 (27.07.2020): 1201. http://dx.doi.org/10.3390/electronics9081201.
Pełny tekst źródłaKaya, Adnan. "Wide-band compact microwave transistor amplifier methodology and the analysis of its input-matching mechanism using negative impedance converter". Microwave and Optical Technology Letters 50, nr 1 (2007): 192–97. http://dx.doi.org/10.1002/mop.23046.
Pełny tekst źródłaNguyen Huu Tho. "A 1.8 to 4 GHz inductor-less highly linear CMOS LNA for wire-less receivers". Journal of Military Science and Technology, nr 76 (12.12.2021): 11–20. http://dx.doi.org/10.54939/1859-1043.j.mst.76.2021.11-20.
Pełny tekst źródłaHoi, Tran Van, Ngo Thi Lanh, Nguyen Xuan Truong, Nguyen Huu Duc i Bach Gia Duong. "Design of a Front-End for Satellite Receiver". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 5 (1.10.2016): 2282. http://dx.doi.org/10.11591/ijece.v6i5.10480.
Pełny tekst źródłaHoi, Tran Van, Ngo Thi Lanh, Nguyen Xuan Truong, Nguyen Huu Duc i Bach Gia Duong. "Design of a Front-End for Satellite Receiver". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 5 (1.10.2016): 2282. http://dx.doi.org/10.11591/ijece.v6i5.pp2282-2290.
Pełny tekst źródłaMorshed, Khaled M., Debabrata K. Karmokar i Karu P. Esselle. "Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage". Sensors 23, nr 4 (13.02.2023): 2095. http://dx.doi.org/10.3390/s23042095.
Pełny tekst źródłaZhao, Jinxiang, Feng Wang, Hanchao Yu, Shengli Zhang, Kuisong Wang, Chang Liu, Jing Wan, Xiaoxin Liang i Yuepeng Yan. "Analysis and Design of a Wideband Low-Noise Amplifier with Bias and Parasitic Parameters Derived Wide Bandpass Matching Networks". Electronics 11, nr 4 (18.02.2022): 633. http://dx.doi.org/10.3390/electronics11040633.
Pełny tekst źródłaBalani, Warsha, Mrinal Sarvagya, Tanweer Ali, Ajit Samasgikar, Pradeep Kumar, Sameena Pathan i Manohara Pai M. Pai M M. "A 20–44 GHz Wideband LNA Design Using the SiGe Technology for 5G Millimeter-Wave Applications". Micromachines 12, nr 12 (7.12.2021): 1520. http://dx.doi.org/10.3390/mi12121520.
Pełny tekst źródłaIslamov, I., i E. Humbataliyev. "General Approaches to Solving Problems of Analysis and Synthesis of Directional Properties of Antenna Arrays". Advanced Electromagnetics 11, nr 4 (27.10.2022): 22–33. http://dx.doi.org/10.7716/aem.v11i4.2060.
Pełny tekst źródłaLee, Chieh-Sen, Chi-Lin Tsai i Chin-Lung Yang. "Novel Cross-Type Network for Wide-Tuning-Range Reconfigurable Multiband Antennas". International Journal of Antennas and Propagation 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/741960.
Pełny tekst źródłaKim, Byungwook, i Sanggeun Jeon. "A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB". Applied Sciences 12, nr 9 (9.05.2022): 4782. http://dx.doi.org/10.3390/app12094782.
Pełny tekst źródłaWu, Chang-Ju, I.-Fong Chen, Chia-Mei Peng, Wen-Yi Tsai i Jwo-Shiun Sun. "A Compact Fractal-Shaped O-Ring Monopole Antenna for Modern Broadband Wireless Applications". WSEAS TRANSACTIONS ON ELECTRONICS 12 (24.08.2021): 93–99. http://dx.doi.org/10.37394/232017.2021.12.13.
Pełny tekst źródłaRuslan Hadi, Noor Syakirah, Zubaida Yusoff, Md Golam Sadeque, Shaiful Jahari Hashim i Muhammad Akmal Chaudhary. "High gain over an octave bandwidth class-F RF power amplifier design using 10W GaN HEM". Bulletin of Electrical Engineering and Informatics 9, nr 5 (1.10.2020): 1899–906. http://dx.doi.org/10.11591/eei.v9i5.2226.
Pełny tekst źródłaKouhalvandi, Lida. "Directly Matching an MMIC Amplifier Integrated with MIMO Antenna through DNNs for Future Networks". Sensors 22, nr 18 (19.09.2022): 7068. http://dx.doi.org/10.3390/s22187068.
Pełny tekst źródłaWang, Qiang, i Yan Zhang. "Design of a Compact UWB Antenna with Triple Band-Notched Characteristics". International Journal of Antennas and Propagation 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/892765.
Pełny tekst źródłaSatyanarayana, EVV, Vivek Kumar, D. Mallikarjun Reddy, T. Siva Paravathi i J. Chandrasekhar Rao. "A compact disc loaded curved elliptical shaped ultra-wideband MIMO antenna". International Journal of Engineering & Technology 7, nr 2.7 (18.03.2018): 597. http://dx.doi.org/10.14419/ijet.v7i2.7.10888.
Pełny tekst źródłaJiang, Jun-Yi, i Hsin-Lung Su. "A Wideband Eight-Element MIMO Antenna Array in 5G NR n77/78/79 and WLAN-5GHz Bands for 5G Smartphone Applications". International Journal of Antennas and Propagation 2022 (16.11.2022): 1–11. http://dx.doi.org/10.1155/2022/8456936.
Pełny tekst źródłaSong, Ickhyun, Gyungtae Ryu, Seung Hwan Jung, John D. Cressler i Moon-Kyu Cho. "Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking". Sensors 23, nr 15 (28.07.2023): 6745. http://dx.doi.org/10.3390/s23156745.
Pełny tekst źródłaBenyetho, Taoufik, Jamal Zbitou, Larbi El Abdellaoui, Hamid Bennis i Abdelwahed Tribak. "A New Fractal Multiband Antenna for Wireless Power Transmission Applications". Active and Passive Electronic Components 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2084747.
Pełny tekst źródłaNguyen, Thuy-Linh, Yasuo Sato i Koichiro Ishibashi. "A 2.77 μW Ambient RF Energy Harvesting Using DTMOS Cross-Coupled Rectifier on 65 nm SOTB and Wide Bandwidth System Design". Electronics 8, nr 10 (16.10.2019): 1173. http://dx.doi.org/10.3390/electronics8101173.
Pełny tekst źródłaYoon, Min, i Jee-Youl Ryu. "Development of Low-Noise Small-Area 24 GHz CMOS Radar Sensor". Journal of Sensors 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/8534198.
Pełny tekst źródłaFomin, Dmitriy G., Stanislav N. Darovskikh, Nikolay V. Dudarev, Igor I. Prokopov i Svyatoslav V. Dudarev. "Simulation of band pass filters based on multilayer technology". Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics 22, nr 1 (styczeń 2022): 77–87. http://dx.doi.org/10.14529/ctcr220106.
Pełny tekst źródłaQasim Hadi Kareem i Rana Ahmed Shihab. "Reconfigurable Compact Quad-port MIMO Antennas for sub-6 GHz Applications". Journal of AL-Farabi for Engineering Sciences 2, nr 1 (31.07.2023): 10. http://dx.doi.org/10.59746/jfes.v2i1.58.
Pełny tekst źródłaJalali, Mahdi, Mohammad Naser-Moghadasi i Ramezan Ali Sadeghzadeh. "Dual circularly polarized multilayer MIMO antenna array with an enhanced SR-feeding network for C-band application". International Journal of Microwave and Wireless Technologies 9, nr 8 (3.05.2017): 1741–48. http://dx.doi.org/10.1017/s1759078717000435.
Pełny tekst źródłaJeong, Jinho, Yeongmin Jang, Jongyoun Kim, Sosu Kim i Wansik Kim. "Design of W-Band GaN-on-Silicon Power Amplifier Using Low Impedance Lines". Applied Sciences 11, nr 19 (28.09.2021): 9017. http://dx.doi.org/10.3390/app11199017.
Pełny tekst źródłaRoy, Sunanda, Jun Jiat Tiang, Mardeni Bin Roslee, Md Tanvir Ahmed, Abbas Z. Kouzani i M. A. Parvez Mahmud. "Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting". Sensors 21, nr 23 (25.11.2021): 7838. http://dx.doi.org/10.3390/s21237838.
Pełny tekst źródłaPalanisamy, Satheeshkumar, Balakumaran Thangaraju, Osamah Ibrahim Khalaf, Youseef Alotaibi, Saleh Alghamdi i Fawaz Alassery. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication". Energies 14, nr 19 (28.09.2021): 6204. http://dx.doi.org/10.3390/en14196204.
Pełny tekst źródłaDanani, S., Sheetal Punia, Ravinder Kumar, Hitesh Kumar B. Pandya i Vinay Kumar. "Design of Stray Radiation Sensor for ITER ECE Diagnostic". EPJ Web of Conferences 277 (2023): 03010. http://dx.doi.org/10.1051/epjconf/202327703010.
Pełny tekst źródła