Gotowa bibliografia na temat „Wide-band Input Matching”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wide-band Input Matching”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wide-band Input Matching"
Huang, Zhe-Yang, Chun-Chieh Chen i Chung-Chih Hung. "Low-noise amplifier with narrow-band and wide-band input impedance matching design". Journal of the Chinese Institute of Engineers 38, nr 5 (25.02.2015): 603–9. http://dx.doi.org/10.1080/02533839.2015.1010452.
Pełny tekst źródłaGalante-Sempere, David, Javier del Pino, Sunil Lalchand Khemchandani i Hugo García-Vázquez. "Miniature Wide-Band Noise-Canceling CMOS LNA". Sensors 22, nr 14 (13.07.2022): 5246. http://dx.doi.org/10.3390/s22145246.
Pełny tekst źródłaBEN AMOR, MERIAM, MOURAD LOULOU, SEBASTIEN QUINTANEL i DANIEL PASQUET. "A FULLY INTEGRATED MULTIBAND CMOS 0.35 μM LNA FOR IEEE802.16 STANDARD". Journal of Circuits, Systems and Computers 22, nr 02 (luty 2013): 1250088. http://dx.doi.org/10.1142/s0218126612500880.
Pełny tekst źródłaHu, Robert, i Mark S. C. Yang. "Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design". International Journal of Infrared and Millimeter Waves 26, nr 2 (luty 2005): 221–45. http://dx.doi.org/10.1007/s10762-005-3002-4.
Pełny tekst źródłaSeethur, Rashmi, Siva Yellampalli i Shreedhar H. K. "Design of Common Gate Current-Reuse Noise Cancellation UWB Low Noise Amplifier in 90nm CMOS". International Journal of Electronics, Communications, and Measurement Engineering 11, nr 1 (1.01.2022): 1–14. http://dx.doi.org/10.4018/ijecme.312257.
Pełny tekst źródłaALAVI-RAD, HOSEIN, SOHEYL ZIABAKHSH i MUSTAPHA C. E. YAGOUB. "A 1.2 V CMOS COMMON-GATE LOW NOISE AMPLIFIER FOR UWB WIRELESS COMMUNICATIONS". Journal of Circuits, Systems and Computers 22, nr 07 (sierpień 2013): 1350052. http://dx.doi.org/10.1142/s0218126613500527.
Pełny tekst źródłaHeo, Bo-Ram, i Ickjin Kwon. "A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting". Sensors 21, nr 22 (10.11.2021): 7483. http://dx.doi.org/10.3390/s21227483.
Pełny tekst źródłaPINO, J. DEL, SUNIL L. KHEMCHANDANI, ROBERTO DÍAZ-ORTEGA, R. PULIDO i H. GARCÍA-VÁZQUEZ. "ON-CHIP INDUCTORS OPTIMIZATION FOR ULTRA WIDE BAND LOW NOISE AMPLIFIERS". Journal of Circuits, Systems and Computers 20, nr 07 (listopad 2011): 1231–42. http://dx.doi.org/10.1142/s0218126611007852.
Pełny tekst źródłaBonenberger, Christopher M. A., i Klaus W. Kark. "A Broadband Impedance-Matching Method for Microstrip Patch Antennas Based on the Bode-Fano Theory". Frequenz 72, nr 7-8 (26.06.2018): 373–80. http://dx.doi.org/10.1515/freq-2018-0037.
Pełny tekst źródłaHu, Shan Wen, Tao Chen, Huai Gao, Long Xing Shi i G. P. Li. "An Advanced Traveling Wave Matching Network for DC-12GHz Variable Gain Amplifier Design". Applied Mechanics and Materials 321-324 (czerwiec 2013): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.331.
Pełny tekst źródłaRozprawy doktorskie na temat "Wide-band Input Matching"
Lin, Ming-Dao, i 林明道. "A Novel Wide Band Low Noise Amplifier using Negative Resistance Input Matching for LTE Applications". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/15789984303620588983.
Pełny tekst źródła國立交通大學
電信工程研究所
102
In this thesis, a novel wide band low noise amplifier combined negative resistance with common gate structure for LTE applications are presented. The research focused on how to reduce the power consumption and noise figure, and using negative resistance to achieve the effect of input impedance matching. In the past, the design of low-noise amplifier used RLC feedback or lengthy inductance, capacitance in series and parallel to achieve broadband matching circuit at the input, however our circuit used fewer of components to increase the bandwidth. In our design, a common gate amplifier with negative resistance using the frequency independent of the transistor current is to replace the traditional architecture of passive inductor at input, and with the gm-boost technique to achieve low power and noise reduction effectively. The shunt peaking network at drain is drawn to further suppress the high-frequency noise and a low noise level is achieved. The proposed LNA is implemented by the TSMC 0.18-μm CMOS technology process, and measured by use of CIC instruments. The measured results are as follows: bandwidth of 0.5 ~ 3.7 GHz, input and output reflection loss are greater than -12 dB, the maximum power gain is 17.8 dB, the minimum noise figure is 3.3 dB, at 2.7 GHz, the P1dB gain compression point is -20 dBm, the IIP3 cut-off point is -10.3 dBm, the core circuit power consumption is 6.48 mW, and the overall layout area including the pads is 0.716 * 0.744 = 0.533 mm2.
Lenka, Manas Kumar. "Blocker-tolerant Receiver Design Suitable for Software-defined and Cognitive Radio Applications". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4127.
Pełny tekst źródłaDepartment of Electronics and Information Technology, Govt. of India.
Streszczenia konferencji na temat "Wide-band Input Matching"
Lenka, Manas Kumar, Akash Agrawal, Vishal Khatri i Gaurab Banerjee. "A Wide-Band Receiver Front-End with Programmable Frequency Selective Input Matching". W 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID). IEEE, 2016. http://dx.doi.org/10.1109/vlsid.2016.96.
Pełny tekst źródłaMubarak, Hamid, i Mustafa Makkawi. "Design and simulation of wide band input matching circuit for RF power transistor in VHF range". W 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE). IEEE, 2017. http://dx.doi.org/10.1109/iccccee.2017.7866086.
Pełny tekst źródłaAn, Xin, Jens Wagner i Frank Ellinger. "A 2:8 GHz to 12:8 GHz UWB LNA Using Transformer Wide-Band Input Matching for IR-UWB Radar Applications". W 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018. http://dx.doi.org/10.1109/mwscas.2018.8623869.
Pełny tekst źródła