Artykuły w czasopismach na temat „White-box attack”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „White-box attack”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Jinghui, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. "A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3486–94. http://dx.doi.org/10.1609/aaai.v34i04.5753.
Pełny tekst źródłaJosse, Sébastien. "White-box attack context cryptovirology." Journal in Computer Virology 5, no. 4 (2008): 321–34. http://dx.doi.org/10.1007/s11416-008-0097-x.
Pełny tekst źródłaPorkodi, V., M. Sivaram, Amin Salih Mohammed, and V. Manikandan. "Survey on White-Box Attacks and Solutions." Asian Journal of Computer Science and Technology 7, no. 3 (2018): 28–32. http://dx.doi.org/10.51983/ajcst-2018.7.3.1904.
Pełny tekst źródłaALSHEKH, MOKHTAR, and KÖKSAL ERENTÜRK. "DEFENSE AGAINST WHITE BOX ADVERSARIAL ATTACKS IN ARABIC NATURAL LANGUAGE PROCESSING (ANLP)." International Journal of Advanced Natural Sciences and Engineering Researches 7, no. 6 (2023): 151–55. http://dx.doi.org/10.59287/ijanser.1149.
Pełny tekst źródłaPark, Hosung, Gwonsang Ryu, and Daeseon Choi. "Partial Retraining Substitute Model for Query-Limited Black-Box Attacks." Applied Sciences 10, no. 20 (2020): 7168. http://dx.doi.org/10.3390/app10207168.
Pełny tekst źródłaZhou, Jie, Jian Bai, and Meng Shan Jiang. "White-Box Implementation of ECDSA Based on the Cloud Plus Side Mode." Security and Communication Networks 2020 (November 19, 2020): 1–10. http://dx.doi.org/10.1155/2020/8881116.
Pełny tekst źródłaLIN, Ting-Ting, and Xue-Jia LAI. "Efficient Attack to White-Box SMS4 Implementation." Journal of Software 24, no. 8 (2014): 2238–49. http://dx.doi.org/10.3724/sp.j.1001.2013.04356.
Pełny tekst źródłaZhang, Sicheng, Yun Lin, Zhida Bao, and Jiangzhi Fu. "A Lightweight Modulation Classification Network Resisting White Box Gradient Attacks." Security and Communication Networks 2021 (October 12, 2021): 1–10. http://dx.doi.org/10.1155/2021/8921485.
Pełny tekst źródłaGao, Xianfeng, Yu-an Tan, Hongwei Jiang, Quanxin Zhang, and Xiaohui Kuang. "Boosting Targeted Black-Box Attacks via Ensemble Substitute Training and Linear Augmentation." Applied Sciences 9, no. 11 (2019): 2286. http://dx.doi.org/10.3390/app9112286.
Pełny tekst źródłaJiang, Yi, and Dengpan Ye. "Black-Box Adversarial Attacks against Audio Forensics Models." Security and Communication Networks 2022 (January 17, 2022): 1–8. http://dx.doi.org/10.1155/2022/6410478.
Pełny tekst źródłaLee, Xian Yeow, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde, and Soumik Sarkar. "Spatiotemporally Constrained Action Space Attacks on Deep Reinforcement Learning Agents." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4577–84. http://dx.doi.org/10.1609/aaai.v34i04.5887.
Pełny tekst źródłaChitic, Raluca, Ali Osman Topal, and Franck Leprévost. "Empirical Perturbation Analysis of Two Adversarial Attacks: Black Box versus White Box." Applied Sciences 12, no. 14 (2022): 7339. http://dx.doi.org/10.3390/app12147339.
Pełny tekst źródłaDionysiou, Antreas, Vassilis Vassiliades, and Elias Athanasopoulos. "Exploring Model Inversion Attacks in the Black-box Setting." Proceedings on Privacy Enhancing Technologies 2023, no. 1 (2023): 190–206. http://dx.doi.org/10.56553/popets-2023-0012.
Pełny tekst źródłaDu, Xiaohu, Jie Yu, Zibo Yi, et al. "A Hybrid Adversarial Attack for Different Application Scenarios." Applied Sciences 10, no. 10 (2020): 3559. http://dx.doi.org/10.3390/app10103559.
Pełny tekst źródłaDuan, Mingxing, Kenli Li, Jiayan Deng, Bin Xiao, and Qi Tian. "A Novel Multi-Sample Generation Method for Adversarial Attacks." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 4 (2022): 1–21. http://dx.doi.org/10.1145/3506852.
Pełny tekst źródłaFu, Zhongwang, and Xiaohui Cui. "ELAA: An Ensemble-Learning-Based Adversarial Attack Targeting Image-Classification Model." Entropy 25, no. 2 (2023): 215. http://dx.doi.org/10.3390/e25020215.
Pełny tekst źródłaChen, Yiding, and Xiaojin Zhu. "Optimal Attack against Autoregressive Models by Manipulating the Environment." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3545–52. http://dx.doi.org/10.1609/aaai.v34i04.5760.
Pełny tekst źródłaTu, Chun-Chen, Paishun Ting, Pin-Yu Chen, et al. "AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 742–49. http://dx.doi.org/10.1609/aaai.v33i01.3301742.
Pełny tekst źródłaUsoltsev, Yakov, Balzhit Lodonova, Alexander Shelupanov, Anton Konev, and Evgeny Kostyuchenko. "Adversarial Attacks Impact on the Neural Network Performance and Visual Perception of Data under Attack." Information 13, no. 2 (2022): 77. http://dx.doi.org/10.3390/info13020077.
Pełny tekst źródłaFang, Yong, Cheng Huang, Yijia Xu, and Yang Li. "RLXSS: Optimizing XSS Detection Model to Defend Against Adversarial Attacks Based on Reinforcement Learning." Future Internet 11, no. 8 (2019): 177. http://dx.doi.org/10.3390/fi11080177.
Pełny tekst źródłaWei, Zhipeng, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. "Boosting the Transferability of Video Adversarial Examples via Temporal Translation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (2022): 2659–67. http://dx.doi.org/10.1609/aaai.v36i3.20168.
Pełny tekst źródłaChang, Heng, Yu Rong, Tingyang Xu, et al. "A Restricted Black-Box Adversarial Framework Towards Attacking Graph Embedding Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3389–96. http://dx.doi.org/10.1609/aaai.v34i04.5741.
Pełny tekst źródłaPark, Sanglee, and Jungmin So. "On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification." Applied Sciences 10, no. 22 (2020): 8079. http://dx.doi.org/10.3390/app10228079.
Pełny tekst źródłaWon, Jongho, Seung-Hyun Seo, and Elisa Bertino. "A Secure Shuffling Mechanism for White-Box Attack-Resistant Unmanned Vehicles." IEEE Transactions on Mobile Computing 19, no. 5 (2020): 1023–39. http://dx.doi.org/10.1109/tmc.2019.2903048.
Pełny tekst źródłaPedersen, Joseph, Rafael Muñoz-Gómez, Jiangnan Huang, Haozhe Sun, Wei-Wei Tu, and Isabelle Guyon. "LTU Attacker for Membership Inference." Algorithms 15, no. 7 (2022): 254. http://dx.doi.org/10.3390/a15070254.
Pełny tekst źródłaGomez-Alanis, Alejandro, Jose A. Gonzalez-Lopez, and Antonio M. Peinado. "GANBA: Generative Adversarial Network for Biometric Anti-Spoofing." Applied Sciences 12, no. 3 (2022): 1454. http://dx.doi.org/10.3390/app12031454.
Pełny tekst źródłaCroce, Francesco, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, and Matthias Hein. "Sparse-RS: A Versatile Framework for Query-Efficient Sparse Black-Box Adversarial Attacks." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6437–45. http://dx.doi.org/10.1609/aaai.v36i6.20595.
Pełny tekst źródłaHuang, Yang, Yuling Chen, Xuewei Wang, Jing Yang, and Qi Wang. "Promoting Adversarial Transferability via Dual-Sampling Variance Aggregation and Feature Heterogeneity Attacks." Electronics 12, no. 3 (2023): 767. http://dx.doi.org/10.3390/electronics12030767.
Pełny tekst źródłaRiadi, Imam, Rusydi Umar, Iqbal Busthomi, and Arif Wirawan Muhammad. "Block-hash of blockchain framework against man-in-the-middle attacks." Register: Jurnal Ilmiah Teknologi Sistem Informasi 8, no. 1 (2021): 1. http://dx.doi.org/10.26594/register.v8i1.2190.
Pełny tekst źródłaCombey, Théo, António Loison, Maxime Faucher, and Hatem Hajri. "Probabilistic Jacobian-Based Saliency Maps Attacks." Machine Learning and Knowledge Extraction 2, no. 4 (2020): 558–78. http://dx.doi.org/10.3390/make2040030.
Pełny tekst źródłaDing, Daizong, Mi Zhang, Fuli Feng, Yuanmin Huang, Erling Jiang, and Min Yang. "Black-Box Adversarial Attack on Time Series Classification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 7358–68. http://dx.doi.org/10.1609/aaai.v37i6.25896.
Pełny tekst źródłaJin, Di, Bingdao Feng, Siqi Guo, Xiaobao Wang, Jianguo Wei, and Zhen Wang. "Local-Global Defense against Unsupervised Adversarial Attacks on Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 8105–13. http://dx.doi.org/10.1609/aaai.v37i7.25979.
Pełny tekst źródłaDas, Debayan, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. "EM/Power Side-Channel Attack: White-Box Modeling and Signature Attenuation Countermeasures." IEEE Design & Test 38, no. 3 (2021): 67–75. http://dx.doi.org/10.1109/mdat.2021.3065189.
Pełny tekst źródłaWang, Yixiang, Jiqiang Liu, Xiaolin Chang, Ricardo J. Rodríguez, and Jianhua Wang. "DI-AA: An interpretable white-box attack for fooling deep neural networks." Information Sciences 610 (September 2022): 14–32. http://dx.doi.org/10.1016/j.ins.2022.07.157.
Pełny tekst źródłaKoga, Kazuki, and Kazuhiro Takemoto. "Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification." Algorithms 15, no. 5 (2022): 144. http://dx.doi.org/10.3390/a15050144.
Pełny tekst źródłaDas, Debayan, and Shreyas Sen. "Electromagnetic and Power Side-Channel Analysis: Advanced Attacks and Low-Overhead Generic Countermeasures through White-Box Approach." Cryptography 4, no. 4 (2020): 30. http://dx.doi.org/10.3390/cryptography4040030.
Pełny tekst źródłaYang, Zhifei, Wenmin Li, Fei Gao, and Qiaoyan Wen. "FAPA: Transferable Adversarial Attacks Based on Foreground Attention." Security and Communication Networks 2022 (October 29, 2022): 1–8. http://dx.doi.org/10.1155/2022/4447307.
Pełny tekst źródłaHaq, Ijaz Ul, Zahid Younas Khan, Arshad Ahmad, et al. "Evaluating and Enhancing the Robustness of Sustainable Neural Relationship Classifiers Using Query-Efficient Black-Box Adversarial Attacks." Sustainability 13, no. 11 (2021): 5892. http://dx.doi.org/10.3390/su13115892.
Pełny tekst źródłaLi, Chenwei, Hengwei Zhang, Bo Yang, and Jindong Wang. "Image classification adversarial attack with improved resizing transformation and ensemble models." PeerJ Computer Science 9 (July 25, 2023): e1475. http://dx.doi.org/10.7717/peerj-cs.1475.
Pełny tekst źródłaLin, Gengyou, Zhisong Pan, Xingyu Zhou, et al. "Boosting Adversarial Transferability with Shallow-Feature Attack on SAR Images." Remote Sensing 15, no. 10 (2023): 2699. http://dx.doi.org/10.3390/rs15102699.
Pełny tekst źródłaZhang, Chao, and Yu Wang. "Research on the Structure of Authentication Protocol Analysis Based on MSCs/Promela." Advanced Materials Research 989-994 (July 2014): 4698–703. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.4698.
Pełny tekst źródłaZhang, Yue, Seong-Yoon Shin, Xujie Tan, and Bin Xiong. "A Self-Adaptive Approximated-Gradient-Simulation Method for Black-Box Adversarial Sample Generation." Applied Sciences 13, no. 3 (2023): 1298. http://dx.doi.org/10.3390/app13031298.
Pełny tekst źródłaGuo, Lu, and Hua Zhang. "A white-box impersonation attack on the FaceID system in the real world." Journal of Physics: Conference Series 1651 (November 2020): 012037. http://dx.doi.org/10.1088/1742-6596/1651/1/012037.
Pełny tekst źródłaShi, Yang, Qin Liu, and Qinpei Zhao. "A Secure Implementation of a Symmetric Encryption Algorithm in White-Box Attack Contexts." Journal of Applied Mathematics 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/431794.
Pełny tekst źródłaLiu, Zhenpeng, Ruilin Li, Dewei Miao, Lele Ren, and Yonggang Zhao. "Membership Inference Defense in Distributed Federated Learning Based on Gradient Differential Privacy and Trust Domain Division Mechanisms." Security and Communication Networks 2022 (July 14, 2022): 1–14. http://dx.doi.org/10.1155/2022/1615476.
Pełny tekst źródłaWang, Fangwei, Yuanyuan Lu, Changguang Wang, and Qingru Li. "Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection." Wireless Communications and Mobile Computing 2021 (August 30, 2021): 1–9. http://dx.doi.org/10.1155/2021/8736946.
Pełny tekst źródłaMao, Junjie, Bin Weng, Tianqiang Huang, Feng Ye, and Liqing Huang. "Research on Multimodality Face Antispoofing Model Based on Adversarial Attacks." Security and Communication Networks 2021 (August 9, 2021): 1–12. http://dx.doi.org/10.1155/2021/3670339.
Pełny tekst źródłaSuri, Anshuman, and David Evans. "Formalizing and Estimating Distribution Inference Risks." Proceedings on Privacy Enhancing Technologies 2022, no. 4 (2022): 528–51. http://dx.doi.org/10.56553/popets-2022-0121.
Pełny tekst źródłaHwang, Ren-Hung, Jia-You Lin, Sun-Ying Hsieh, Hsuan-Yu Lin, and Chia-Liang Lin. "Adversarial Patch Attacks on Deep-Learning-Based Face Recognition Systems Using Generative Adversarial Networks." Sensors 23, no. 2 (2023): 853. http://dx.doi.org/10.3390/s23020853.
Pełny tekst źródłaSun, Jiazheng, Li Chen, Chenxiao Xia, et al. "CANARY: An Adversarial Robustness Evaluation Platform for Deep Learning Models on Image Classification." Electronics 12, no. 17 (2023): 3665. http://dx.doi.org/10.3390/electronics12173665.
Pełny tekst źródła