Gotowa bibliografia na temat „Wet chemical syntheses”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wet chemical syntheses”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wet chemical syntheses"
Gilroy, Kyle D., Hsin-Chieh Peng, Xuan Yang, Aleksey Ruditskiy i Younan Xia. "Symmetry breaking during nanocrystal growth". Chemical Communications 53, nr 33 (2017): 4530–41. http://dx.doi.org/10.1039/c7cc01121k.
Pełny tekst źródłaWang, Bingzhe, Verena Engelhardt, Alexandra Roth, Rüdiger Faust i Dirk M. Guldi. "n- versus p-doping of graphite: what drives its wet-chemical exfoliation?" Nanoscale 9, nr 32 (2017): 11632–39. http://dx.doi.org/10.1039/c7nr03379f.
Pełny tekst źródłaPalmero, Paola. "Microstructural Tailoring of YAG and YAG-Containing Nanoceramics through Advanced Synthesis Routes". Advances in Science and Technology 62 (październik 2010): 34–43. http://dx.doi.org/10.4028/www.scientific.net/ast.62.34.
Pełny tekst źródłaGuldi, Dirk Michael. "(Invited) Towards Understanding the Competition of Electron and Energy Transfer in “Molecular” Nanographenes on the Example of Hexa-Peri-Hexabenzocoronene". ECS Meeting Abstracts MA2024-01, nr 7 (9.08.2024): 795. http://dx.doi.org/10.1149/ma2024-017795mtgabs.
Pełny tekst źródłaWang, Yumeng, i Zhenxing Yin. "Review of Wet Chemical Syntheses of Copper Nanowires and Their Recent Applications". Applied Science and Convergence Technology 28, nr 6 (30.11.2019): 186–93. http://dx.doi.org/10.5757/asct.2019.28.6.186.
Pełny tekst źródłaBecker, Sidney, Jonas Feldmann, Stefan Wiedemann, Hidenori Okamura, Christina Schneider, Katharina Iwan, Antony Crisp, Martin Rossa, Tynchtyk Amatov i Thomas Carell. "Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides". Science 366, nr 6461 (3.10.2019): 76–82. http://dx.doi.org/10.1126/science.aax2747.
Pełny tekst źródłaPadmini, P., i T. R. Narayanan Kutty. "Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion". Journal of Materials Chemistry 4, nr 12 (1994): 1875. http://dx.doi.org/10.1039/jm9940401875.
Pełny tekst źródłaIsobe, T. "Low-temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization". physica status solidi (a) 203, nr 11 (wrzesień 2006): 2686–93. http://dx.doi.org/10.1002/pssa.200669630.
Pełny tekst źródłaSportelli, Maria, Margherita Izzi, Annalisa Volpe, Maurizio Clemente, Rosaria Picca, Antonio Ancona, Pietro Lugarà, Gerardo Palazzo i Nicola Cioffi. "The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials". Antibiotics 7, nr 3 (28.07.2018): 67. http://dx.doi.org/10.3390/antibiotics7030067.
Pełny tekst źródłaCorreya, Adrine Antony, V. P. N. Nampoori i A. Mujeeb. "Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects". PeerJ Materials Science 5 (7.03.2023): e26. http://dx.doi.org/10.7717/peerj-matsci.26.
Pełny tekst źródłaRozprawy doktorskie na temat "Wet chemical syntheses"
Qin, Jiadong. "Novel Wet Chemical Syntheses of Graphene Oxide and Vanadium Oxide for Energy Storage Applications". Thesis, Griffith University, 2020. http://hdl.handle.net/10072/393192.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Poirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Pełny tekst źródłaSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Sortland, Øyvind Sunde. "Wet Chemical Synthesis of Materials for Intermediate Band Solar Cells". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16327.
Pełny tekst źródłaTucić, Aleksandar. "Wet chemical synthesis and characterization of organic/TiO 2 multilayers". [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-34138.
Pełny tekst źródłaTucić, Aleksandar [Verfasser]. "Wet chemical synthesis and characterization of organic, TiO2 multilayers / vorgelegt von Aleksandar Tucić". Stuttgart : Max-Planck-Inst. für Metallforschung, 2008. http://d-nb.info/995389497/34.
Pełny tekst źródłaBorton, Peter Thomas. "Preparation and Characterization of Manganese Fulleride". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354556594.
Pełny tekst źródłaKlein, Thomas [Verfasser]. "Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides / Thomas Klein". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1231792027/34.
Pełny tekst źródłaKennedy, Steven Roger 1971. "Synthesis, characterization and use of peroxotungstic ethoxide as a precursor to wet-chemically derived tungsten oxide thin films". Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/278554.
Pełny tekst źródłaRostek, Alexander [Verfasser], i Matthias [Akademischer Betreuer] Epple. "Wet-chemical synthesis of mono- and bimetallic nanoparticles of group VIII to XI metals and their detailed characterisation / Alexander Rostek ; Betreuer: Matthias Epple". Duisburg, 2019. http://d-nb.info/1191691055/34.
Pełny tekst źródłaHagelin, Alexander. "ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64730.
Pełny tekst źródłaKsiążki na temat "Wet chemical syntheses"
Rottenberg, Jonathan. Depression. Oxford University Press, 2021. http://dx.doi.org/10.1093/wentk/9780190083151.001.0001.
Pełny tekst źródłaNorwood, F. Bailey, Michelle S. Calvo-Lorenzo, Sarah Lancaster i Pascal A. Oltenacu. Agricultural and Food Controversies. Oxford University Press, 2015. http://dx.doi.org/10.1093/wentk/9780199368433.001.0001.
Pełny tekst źródłaWertz, Julie, Jonathan Faiers, Willow Mullins, Beverly Lemire, Susan Carden i Fiona Anderson. Turkey Red. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350217249.
Pełny tekst źródłaCzęści książek na temat "Wet chemical syntheses"
Majid, Abdul, i Maryam Bibi. "Wet Chemical Synthesis Methods". W Cadmium based II-VI Semiconducting Nanomaterials, 43–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68753-7_3.
Pełny tekst źródłaNagabhushana, K. S., i H. Bönnemann. "Wet Chemical Synthesis of Nanoparticles". W Nanotechnology in Catalysis, 51–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9048-8_4.
Pełny tekst źródłaJadhav, Abhijit. "Wet Chemical Methods for Nanop article Synthesis". W Chemical Methods for Processing Nanomaterials, 49–58. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429023187-3.
Pełny tekst źródłaZhang, Fan. "“Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles". W Photon Upconversion Nanomaterials, 21–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_2.
Pełny tekst źródłaSingh, Vartika S., i S. V. Moharil. "Simple Wet-Chemical Synthesis of Ce3+ Doped γ-BaAlF5". W Springer Proceedings in Physics, 557–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_53.
Pełny tekst źródłaMurase, Hideaki, Shoichiro Shio i Atsushi Nakahira. "Synthesis and Evaluation of Hollow-Tubular ZnO by Wet Chemical Method". W Solid State Phenomena, 571–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.571.
Pełny tekst źródłaShrivastava, Navadeep, i Surender Kumar Sharma. "Controlled Wet Chemical Synthesis of Multifunctional Nanomaterials: Current Status and Future Possibility". W Nanohybrids in Environmental & Biomedical Applications, 3–28. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351256841-1.
Pełny tekst źródłaAsamoah, R. B., A. Yaya, E. Annan, P. Nbelayim, F. Y. H. Kutsanedzie, P. K. Nyanor i I. Asempah. "Novel Cost-Effective Synthesis of Copper Oxide Nanostructures by The Influence of pH in the Wet Chemical Synthesis". W Sustainable Education and Development – Sustainable Industrialization and Innovation, 522–29. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25998-2_40.
Pełny tekst źródłaJeon, Seung Yup, Eun Ju Chae, Won Ki Lee, Gun Dae Lee, Seong Soo Hong, Seog Young Yoon i Seong Soo Park. "A Study for Synthesis of Nanobelt and Nanowire Nickel Powders by Wet Chemical Method". W Materials Science Forum, 83–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.83.
Pełny tekst źródłaKasinath, Rajendra K., Michael Klem i Robert Usselman. "Citrate Mediated Wet Chemical Synthesis of Fe Doped Nanoapatites: A Model for Singly Doped Multifunctional Nanostructures". W Supplemental Proceedings, 11–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch2.
Pełny tekst źródłaStreszczenia konferencji na temat "Wet chemical syntheses"
Tumram, Priya V., Pranay R. Kautkar i S. V. Moharil. "Wet chemical synthesis of KCaI3:Eu2+ phosphor". W PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098612.
Pełny tekst źródłaTumram, Priya V., S. P. Wankhede i S. V. Moharil. "Wet chemical synthesis of KSr2I5:Eu2+ phosphor". W INTERNATIONAL CONFERENCE ON “MULTIDIMENSIONAL ROLE OF BASIC SCIENCE IN ADVANCED TECHNOLOGY” ICMBAT 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5100391.
Pełny tekst źródłaZhang, Can-ying, Hai-tao Zhu i Da-xiong Wu. "Controllable Synthesis of Nanofluids With Wet Chemical Method". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18163.
Pełny tekst źródłaCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto i Ana Lilia Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". W European Conference on Biomedical Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ecbo.2015.95371h.
Pełny tekst źródłaSamanta, P. K., A. K. Mandal, S. Mishra i A. Saha. "Wet-chemical synthesis and optical properties of CuO nanoparticles". W 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). IEEE, 2017. http://dx.doi.org/10.1109/iementech.2017.8076941.
Pełny tekst źródłaKlochko, N. P., V. R. Kopach, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, O. N. Otchenashko, D. O. Zhadan i in. "Nanostructured thermoelectric thin films obtained by wet chemical synthesis". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190362.
Pełny tekst źródłaCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto i Ana L. Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". W European Conferences on Biomedical Optics, redaktorzy J. Quincy Brown i Volker Deckert. SPIE, 2015. http://dx.doi.org/10.1117/12.2183183.
Pełny tekst źródłaCepeda-Pérez, E. I., M. A. Cueto-Bastida, F. Durán-Robles, L. Pérez-Mayen, T. López-Luke i E. de la Rosa. "Cell Imaging Technique Using Quantum Dots by Wet Chemical Synthesis". W Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.lth4a.25.
Pełny tekst źródłaPark, H. Y., K. M. Lee, Y. H. Ahn, Soonil Lee, Ken Ha Koh, K. H. Park i D. R. Suh. "Cathodoluminescence Characterization of ZnO Nanorods Grown by Wet Chemical Synthesis". W 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391340.
Pełny tekst źródłaSugan, S., i R. Dhanasekaran. "Wet chemical synthesis and characterization of AgGaSe[sub 2] nanoparticles". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810128.
Pełny tekst źródłaRaporty organizacyjne na temat "Wet chemical syntheses"
Landolt, Peter, Ezra Dunkelblum, Robert R. Heath i Moshe Kehat. Host Plant Chemical Mediation of Heliothis Reproductive Behavior. United States Department of Agriculture, październik 1992. http://dx.doi.org/10.32747/1992.7568753.bard.
Pełny tekst źródłaDinger, Eric, i Eric Dinger. Analysis of stream types in Klamath Network parks based on physical habitat and chemical characters. National Park Service, 2024. http://dx.doi.org/10.36967/2306085.
Pełny tekst źródłaSela, Shlomo, i Michael McClelland. Desiccation Tolerance in Salmonella and its Implications. United States Department of Agriculture, maj 2013. http://dx.doi.org/10.32747/2013.7594389.bard.
Pełny tekst źródłaSchaffer, Arthur A., i Jocelyn Rose. Understanding Cuticle Development in Tomato through the Study of Novel Germplasm with Malformed Cuticles. United States Department of Agriculture, czerwiec 2013. http://dx.doi.org/10.32747/2013.7593401.bard.
Pełny tekst źródła