Gotowa bibliografia na temat „Weedy biomass”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Weedy biomass”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Weedy biomass"
Place, G. T., S. C. Reberg-Horton, D. L. Jordan, T. G. Isleib i G. G. Wilkerson. "Influence of Virginia Market Type Genotype on Peanut Response to Weed Interference". Peanut Science 39, nr 1 (1.01.2012): 22–29. http://dx.doi.org/10.3146/ps10-12.1.
Pełny tekst źródłaMahajan, Gulshan, Mugalodi S. Ramesha i Bhagirath S. Chauhan. "Response of Rice Genotypes to Weed Competition in Dry Direct-Seeded Rice in India". Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/641589.
Pełny tekst źródłaChase, Carlene A., Odemari S. Mbuya i Danielle D. Treadwell. "Water Infiltration in Fall Broccoli". HortScience 41, nr 4 (lipiec 2006): 998B—998. http://dx.doi.org/10.21273/hortsci.41.4.998b.
Pełny tekst źródłaShahbazi, Saeed, Marjan Diyanat, Sareh Mahdavi i Soheida Samadi. "Broadleaf weed control in rain-fed chickpea". Weed Technology 33, nr 5 (13.08.2019): 727–32. http://dx.doi.org/10.1017/wet.2018.40.
Pełny tekst źródłaRezvani, M., F. Zaefarian i M. Jovieni. "Weed suppression ability of six soybean [Glycine max (L.) Merr.] varieties under natural weed development conditions". Acta Agronomica Hungarica 61, nr 1 (1.03.2013): 43–53. http://dx.doi.org/10.1556/aagr.61.2013.1.5.
Pełny tekst źródłaBordelon, Bruce P., i Stephen C. Weller. "Cover Crop Effects on Weed Control and Growth of First-year Grapevines". HortScience 30, nr 4 (lipiec 1995): 801E—801. http://dx.doi.org/10.21273/hortsci.30.4.801e.
Pełny tekst źródłaRasool, Ghulam, Gulshan Mahajan, Rajpaul Yadav, Zarka Hanif i Bhagirath Singh Chauhan. "Row spacing is more important than seeding rate for increasing Rhodes grass (Chloris gayana) control and grain yield in soybean (Glycine max)". Crop and Pasture Science 68, nr 7 (2017): 620. http://dx.doi.org/10.1071/cp17229.
Pełny tekst źródłaKubota, Hiroshi, Sylvie A. Quideau, Pierre J. Hucl i Dean M. Spaner. "The effect of weeds on soil arbuscular mycorrhizal fungi and agronomic traits in spring wheat (Triticum aestivumL.) under organic management in Canada". Canadian Journal of Plant Science 95, nr 4 (lipiec 2015): 615–27. http://dx.doi.org/10.4141/cjps-2014-284.
Pełny tekst źródłaAhmadi, Abdol Reza, Saeed Shahbazi i Marjan Diyanat. "Efficacy of Five Herbicides for Weed Control in Rain-Fed Lentil (Lens culinaris Medik.)". Weed Technology 30, nr 2 (czerwiec 2016): 448–55. http://dx.doi.org/10.1614/wt-d-15-00125.1.
Pełny tekst źródłaAwoke Mensa, Teshale Wube i Tariku Simion. "Effect of weed control methods on weed biomass and grain yield of maize (Zea mays L.) under rainfed condition in Basketo Special District, Southern Ethiopia". International Journal of Science and Research Archive 9, nr 1 (30.05.2023): 168–73. http://dx.doi.org/10.30574/ijsra.2023.9.1.0362.
Pełny tekst źródłaRozprawy doktorskie na temat "Weedy biomass"
Pittman, Kara Brooke. "High Residue Cover Crops for Annual Weed Suppression in Corn and Soybean Production and Potential for Hairy Vetch (Vicia villosa) to be Weedy". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/82041.
Pełny tekst źródłaMaster of Science in Life Sciences
Pittman, Kara. "High Residue Cover Crops for Annual Weed Suppression in Corn and Soybean Production and Potential for Hairy Vetch (Vicia villosa) to be Weedy". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/82041.
Pełny tekst źródłaMaster of Science in Life Sciences
Davis, Philip Browning. "The invasion potential and competitive ability of Camelina sativa (L.) Crantz (camelina) in rangeland ecosystems". Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/davis/DavisP0510.pdf.
Pełny tekst źródłaTolson, Joshua Allen. "THE EFFECT OF INTEGRATED WEED MANAGEMENT STRATEGIES ON WEED POPULATIONS AND BIOMASS, PASTURE PRODUCTIVITY, ECONOMIC RETURNS, AND FORAGE QUALITY WITH AND WITHOUT GRAZING". UKnowledge, 2012. http://uknowledge.uky.edu/pss_etds/4.
Pełny tekst źródłaMuzangwa, Lindah. "Cover crop biomass production and effects on weeds and soil fertility in a maize-based conservation agriculture system". Thesis, University of Fort Hare, 2011. http://hdl.handle.net/10353/484.
Pełny tekst źródłaBedet, Charlotte. "Soil fertility, crop nutrients, weed biomass and insect populations in organic and conventional field corn (Zea mays L.) agroecosystems /". The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488196781734832.
Pełny tekst źródłaGavazzi, Michael Joseph. "The Influence of Elevated Carbon Dioxide and Water Availability on Herbaceous Weed Development and Planted Loblolly Pine (Pinus taeda) and Coppice Sweetgum (Liquidambar styraciflua) Growth". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36813.
Pełny tekst źródłaWeed growth had an effect on tree growth, but the amount of variation in tree biomass explained by weed biomass was very low. It appears that the tree seedlings benefited more from available resources than the herbaceous weeds. The influence of competition with loblolly pine and elevated CO2 did not have an influence on total weed biomass; however, it did favor C3 weed community development regardless of water availability. This suggests that weed community composition may shift toward C3 plants in a future elevated CO2 atmosphere.
Loblolly pine height, diameter, needle, shoot and total biomass were significantly greater in the well watered treatment than the water stressed treatment. Pine root, needle, shoot and total biomass were significantly greater in the elevated treatment than the ambient treatment. While not significant, root biomass of water stressed pine seedlings was 63% greater in the elevated CO2 treatment than the ambient treatment. There was a significant water and CO2 interaction for pine root:shoot ratio. Under elevated CO2, root:shoot ratio was significantly greater in the water stressed treatment than the well watered treatment. In contrast, root:shoot ratio in the ambient treatment was nearly identical under both water treatments. These results indicate that loblolly pine will respond favorably in an elevated CO2 atmosphere, even under dry conditions.
The coppiced sweetgum seedlings responded favorably to well watered conditions
with significant increases in leaf area, specific leaf area, leaf, shoot and total
biomass compared to water stressed conditions. Leaf, root, shoot+stump and total
biomass of sweetgum significantly increased and specific leaf area decreased under
elevated CO2 compared to ambient CO2, but differences were smaller than previous
findings. This indicates that coppicing may dampen the growth response to
elevated CO2, at least in the initial growth stage after coppicing.
Master of Science
Gonçalves, Gerlândio Suassuna. "Período crítico de interferência de plantas infestantes e seus efeitos sobre as características fisiológicas e nutricionais em laranjeira ‘pera’, no Amazonas". Universidade Federal do Amazonas, 2015. http://tede.ufam.edu.br/handle/tede/4038.
Pełny tekst źródłaApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-10T15:31:37Z (GMT) No. of bitstreams: 1 Tese-Gerlandio Suassuna Gonçalves.pdf: 1253081 bytes, checksum: bb8f078c3065d7b328b0bbf489d24eba (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-10T15:33:53Z (GMT) No. of bitstreams: 1 Tese-Gerlandio Suassuna Gonçalves.pdf: 1253081 bytes, checksum: bb8f078c3065d7b328b0bbf489d24eba (MD5)
Made available in DSpace on 2015-06-10T15:33:53Z (GMT). No. of bitstreams: 1 Tese-Gerlandio Suassuna Gonçalves.pdf: 1253081 bytes, checksum: bb8f078c3065d7b328b0bbf489d24eba (MD5) Previous issue date: 2015-02-10
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The determination of the critical period of weed interference is very important because it indicates the phase of the culture in which the management of weed shall be performed, furthermore, it limits the number of weeding and other management practices to the minimum, allowing the plant express its maximum yield potential at lower cost to the producer. The aim of this study was to identify the critical period of weed interference in the culture of orange ‘Pera’ tree by parameters valuated: falling immature fruits, productivity, juice yield, juice chemical characteristics, production of photosynthetic pigments and proline in leaves of orange tree, identify the weed species and their accumulation of biomass and nutrients. The experiment was installed in october 2012 and conducted until september 2014, in Rio Preto da Eva - AM. To define the treatments with and without interference of weeds in orange tree, was taken as reference the water balance in the region. The interference periods were defined considering the degree of water availability or absence in the soil: from october to january; february to may; june to september; october to may; october to January, june to september and february to september; period without weed interference (control treatment), and without producer management practices interference. The control of weed was obtained using the herbicide glyphosate (1.720 g ha-1 e.a.). The characteristics evaluated were: Falling immature fruits, productivity, juice yield, total soluble solids (SS), titratable acidity (TA), technological index (TI), chlorophyll production and carotenoids, proline content, biomass accumulation and nutrients by weeds. The treatment with weed interference in the period from october to may increase the fruit drop, reduced the number of fruits per plant and productivity, promoted an increase in soluble solids (SS), total acidity (TA) and reduced values of SS/TA ratio. The different periods of weed interference did not promote significant changes in the contents of chlorophyll a, b, total and of carotenoids in orange tree leaves, but viii promoted significant changes in the free proline content in the leaves. The weed species differ from each other in the accumulation of biomass and nutrients. The critical period of weed interference to the culture of orange ‘Pera’ was from october to may.
A determinação do período crítico de interferência de plantas infestantes é muito importante, pois seu conhecimento indica a fase da cultura em que o manejo das infestantes deve ser realizado, limita o número de capinas e de outras práticas de manejo ao mínimo necessário, possibilitando que a planta expresse o seu máximo potencial produtivo com menor custo para o produtor. O objetivo deste trabalho foi identificar o período crítico de interferência de plantas infestantes na cultura da laranja ‘Pera’ pela avaliação dos parâmetros: queda de frutos imaturos, produtividade, rendimento em suco e suas características químicas, produção de pigmentos fotossintéticos e de prolina nas folhas de laranjeira e identificar as espécies infestantes assim como a acumulação de biomassa e de nutrientes por elas. O experimento foi instalado em outubro de 2012 e conduzido até setembro de 2014, no município de Rio Preto da Eva – AM. Para definição dos tratamentos de interferência ou não de plantas infestantes em laranjeira, tomou-se como referência o balanço hídrico da região. Os períodos de interferência estabelecidos levaram em consideração o grau de disponibilidade ou não de água no solo: de outubro a janeiro; fevereiro a maio; junho a setembro; de outubro a maio; outubro a janeiro e de junho a setembro; fevereiro a setembro; sem interferência das plantas infestantes – tratamento controle; e sem interferência com práticas de manejo do produtor. O controle das plantas infestantes foi obtido com uso do herbicida glyphosate (1.720 g ha-1 e.a.). As características avaliadas foram: queda de frutos imaturos, produtividade, rendimento em suco, sólidos solúveis totais (SS), acidez titulável (AT), índice tecnológico (IT), produção de clorofila e de carotenoides, teor de prolina, acumulação de biomassa e nutrientes pelas infestantes. O tratamento com interferência das plantas infestantes no período de outubro a maio aumentou a queda de frutos prematuros, reduziu o número de frutos por planta e a produtividade, promoveu incremento dos sólidos solúveis (SS), da acidez total (AT) e reduziu vi os valores da relação SS/AT. Os diferentes períodos de interferência de plantas infestantes não promoveram alterações significativas nos teores de clorofila a, b, total e de carotenoides em folhas de laranjeira, mas promoveram mudanças significativas no conteúdo de prolina livre nas folhas. As espécies infestantes diferiram entre si na acumulação de biomassa e de nutrientes. O período crítico de interferência de plantas infestantes para a cultura da laranjeira foi de outubro a maio.
Musunda, Bothwell Zvidzai. "Evaluation of cover crop species for biomass production, weed suppression and maize yields under irrigation in the Eastern Cape Province, South Africa". Thesis, University of Fort Hare, 2010. http://hdl.handle.net/10353/347.
Pełny tekst źródłaMashingaidze, Nester. "Weed dynamics in low-input dryland smallholder conservation agriculture systems in semi-arid Zimbabwe". Thesis, University of Pretoria, 2013. http://hdl.handle.net/2263/24412.
Pełny tekst źródłaThesis (PhD)--University of Pretoria, 2013.
Plant Production and Soil Science
unrestricted
Książki na temat "Weedy biomass"
Tyagi, P. D. Fuel from wastes and weeds. New Delhi: Batra Book Service, 1989.
Znajdź pełny tekst źródłaMadsen, John Douglas. Seasonal biomass and carbohydrate allocation in a southern population of Eurasian watermilfoil. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1997.
Znajdź pełny tekst źródłaBoyd, William A. HYDRIL (version 1.0): A simulation model for growth of hydrilla. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1996.
Znajdź pełny tekst źródłaDevine, Warren D. Estimating tree biomass, carbon, and nitrogen in two vegetation control treatments in an 11-year-old Douglas-fir plantation on a highly productive site. Portland, OR: United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Weedy biomass"
Adak, Anurup, Surender Singh, A. K. Lavanya, Anamika Sharma i Lata Nain. "Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes". W Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 83–116. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95480-6_4.
Pełny tekst źródłaJagtap, Umesh B., i Ranjit G. Gurav. "Weed Biomass-Based Nanoparticles and Their Applications". W Bioremediation using weeds, 225–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6552-0_10.
Pełny tekst źródłaGilreath, J. P. "Effect of Plant Population on Biomass Production of Six Weed Species". W Biomass Energy Development, 207–16. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0590-4_19.
Pełny tekst źródłaVinod, Singh Gour, Ravneet Chug i S. L. Kothari. "Weed Biomass as Feedstock for Bioethanol Production: A Review". W Sustainable Biofuel and Biomass, 213–24. Includes bibliographical references and index: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429265099-11.
Pełny tekst źródłaJagtap, Sujit Sadashiv, i Ashwini Ashok Bedekar. "Seaweed Biomass Utilization Pathways in Microbes and Their Applications in the Production of Biofuels". W Bioremediation using weeds, 99–120. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6552-0_5.
Pełny tekst źródłaAggarwal, Neeraj K., Naveen Kumar i Mahak Mittal. "Potential of Weed Biomass for Bioethanol Production". W Green Chemistry and Sustainable Technology, 65–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05091-6_5.
Pełny tekst źródłaGurav, Ranjit G., Shashi Kant Bhatia, Umesh B. Jagtap, Yung-Hun Yang, Yong-Keun Choi, Jingchun Tang i Amit Bhatnagar. "Utilization of Invasive Weed Biomass for Biochar Production and Its Application in Agriculture and Environmental Clean-up". W Bioremediation using weeds, 207–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6552-0_9.
Pełny tekst źródłaMéndez-González, Fernando, Alejandra Pichardo-Sánchez, Ben Hur Espinosa-Ramírez, Nubia R. Rodríguez-Durán, Guadalupe Bustos-Vázquez i Luis V. Rodríguez-Durán. "Valorization of Nonnative Aquatic Weeds Biomass Through Their Conversion to Biofuel". W Handbook of Research on Bioenergy and Biomaterials, 271–81. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003105053-11.
Pełny tekst źródłaPergher, Gianfranco, Rino Gubiani i Matia Mainardis. "A Biomass-Fueled Flamer for In-Row Weed Control in Vineyards: An Economic Evaluation". W Lecture Notes in Civil Engineering, 381–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39299-4_43.
Pełny tekst źródłaThierfelder, Christian, i Peter Steward. "Increasing adaptation to climate stress by applying conservation agriculture in Southern Africa." W Conservation agriculture in Africa: climate smart agricultural development, 270–83. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0016.
Pełny tekst źródłaStreszczenia konferencji na temat "Weedy biomass"
Sharma, Ashutosh, Priyanka Sharma, Archana Joshi, R. K. Bachheti i V. K. Mishra. "Process for clean energy-pretreatment of cheap weedy raw material Ipomea carnea biomass with NaOH: Comparative process evaluation". W RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0154376.
Pełny tekst źródłaBressan, Glaucia M., Vilma A. Oliveira, Estevan R. Hruschka i Maria C. Nicoletti. "Biomass Based Weed-Crop Competitiveness Classification Using Bayesian Networks". W Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.4389596.
Pełny tekst źródłaBressan, Glaucia M., Vilma A. Oliveira, Estevan R. Hruschka i Maria C. Nicoletti. "Biomass Based Weed-Crop Competitiveness Classification Using Bayesian Networks". W Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.60.
Pełny tekst źródłaMerienne, J., A. Larmure i C. Gée. "Preliminary study for weed biomass prediction combining visible images with a plant-growth model". W 12th European Conference on Precision Agriculture. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-888-9_74.
Pełny tekst źródłaSamy, Mohamed Mahmoud, i Shimaa Barakat. "Hybrid Invasive Weed optimization - Particle Swarm optimization Algorithm for Biomass/PV Micro-grid Power System". W 2019 21st International Middle East Power Systems Conference (MEPCON). IEEE, 2019. http://dx.doi.org/10.1109/mepcon47431.2019.9008156.
Pełny tekst źródłaSimic, Milena, Vesna Dragičevic, Željko Dolijanovic, Milan Brankov i Života Jovanovic. "ZNAČAJ PREDUSEVA ZA PRODUKTIVNOST KUKURUZA". W SAVETOVANJE o biotehnologiji sa međunarodnim učešćem. University of Kragujeva, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.085s.
Pełny tekst źródłaMehmeti, Arben. "IMPACT OF CHEMICAL AND MECHANICAL WEED CONTROL ON THE FLORISTIC COMPOSITION AND BIOMASS PRODUCTION IN MAIZE CROP". W 14th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b51/s20.049.
Pełny tekst źródłaAponte, Jorge Alberto, i Gerardo Gordillo. "Wild Cane Potential to Produce Gaseous Fuels via Air-Steam Thermal Gasification". W ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95239.
Pełny tekst źródłaCorneanu, Mihaela, Cornelia Buzatu-Goanta i Constantin Netoiu. "Quantitative characters variability and diseases / pests’ tolerance of some of Salix SP. Accessions". W VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.99.
Pełny tekst źródłaRaporty organizacyjne na temat "Weedy biomass"
Nathan, Harms, i Cronin James. Variability in weed biological control : effects of foliar nitrogen on larval development and dispersal of the alligatorweed flea beetle, Agasicles hygrophila. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41886.
Pełny tekst źródła