Gotowa bibliografia na temat „Wear”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wear”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wear"
Jiang, Ya Nan, Wei Hua Zhang i Dong Li Song. "Study on the Law of Wheel Wear Based on Copula". Applied Mechanics and Materials 427-429 (wrzesień 2013): 246–51. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.246.
Pełny tekst źródłaWAKAMATSU, Yasushi, Kiyoshi KAKUTA i Hideo OGURA. "Wear Test Combining Simulated Occiusal Wear and Toothbrush Wear". Dental Materials Journal 22, nr 3 (2003): 383–96. http://dx.doi.org/10.4012/dmj.22.383.
Pełny tekst źródłaADACHI, Koshi, Koji KATO i Ning CHEN. "Wear Map of Ceramics. 1st Report. Classification of Wear Mode-Mild Wear/Severe Wear." Transactions of the Japan Society of Mechanical Engineers Series C 63, nr 609 (1997): 1718–26. http://dx.doi.org/10.1299/kikaic.63.1718.
Pełny tekst źródłaZhou, Jun, Ming Pu Liu i Hong Qi Sun. "Research on the Wear Process of High Speed Cutting Ni-Based Superalloy". Materials Science Forum 800-801 (lipiec 2014): 102–6. http://dx.doi.org/10.4028/www.scientific.net/msf.800-801.102.
Pełny tekst źródłaWoydt, M., A. Skopp, I. Dörfel i K. Witke. "Wear engineering oxides/anti-wear oxides". Wear 218, nr 1 (czerwiec 1998): 84–95. http://dx.doi.org/10.1016/s0043-1648(98)00181-1.
Pełny tekst źródłaWilson, R. D., i J. A. Hawk. "Impeller wear impact-abrasive wear test". Wear 225-229 (kwiecień 1999): 1248–57. http://dx.doi.org/10.1016/s0043-1648(99)00046-0.
Pełny tekst źródłaWilliams, John A. "Wear and wear particles—some fundamentals". Tribology International 38, nr 10 (październik 2005): 863–70. http://dx.doi.org/10.1016/j.triboint.2005.03.007.
Pełny tekst źródłaOKABE, HEIHACHIRO. "Friction and wear. Friction, wear, lubrication." NIPPON GOMU KYOKAISHI 61, nr 5 (1988): 307–14. http://dx.doi.org/10.2324/gomu.61.307.
Pełny tekst źródłaRavikiran, A. "Wear Mechanism Based on Wear Anisotropy". Tribology Transactions 43, nr 2 (styczeń 2000): 287–92. http://dx.doi.org/10.1080/10402000008982342.
Pełny tekst źródłaKato, Koji. "Micro-mechanisms of wear — wear modes". Wear 153, nr 1 (marzec 1992): 277–95. http://dx.doi.org/10.1016/0043-1648(92)90274-c.
Pełny tekst źródłaRozprawy doktorskie na temat "Wear"
Young, William G. "Tooth wear /". [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17715.pdf.
Pełny tekst źródłaDone, Vamshidhar. "Numerical modeling of dry wear : Experimental study of fretting wear, fretting wear simulations with debris entrapped and industrial applications of fretting wear models". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI137.
Pełny tekst źródłaMany numerical models are proposed in the literature using finite element and finite discrete element methods to study fretting wear, they barely include the effect of wear debris. These models being computationally expensive, simulating large number of fretting wear cycles is not practically feasible. A new methodology is proposed which needs only bulk material properties like friction/wear coefficients and uses semi-analytical methods to simulate fretting wear with entrapped debris. In this approach, debris are assumed to be attached to one of the surfaces during the fretting process. The results obtained from this approach were compared with fretting experiments. The proposed method permits to capture the wear depth and scar width, and results are very close to that observed in the experiments. Valve assembly of combustion engines undergo fretting wear due to a complex phenomenon involving structural stiffness and contact tribology. Valve wear has many detrimental effects on the engine performance. It causes valve recession leading to changes in connections of valve drive train in turn disturbing the opening and closing of valves. With stringent emission norms, usage of lubricant to reduce friction at the contact is restricted. If the wear across the circumference is not uniform, there will be leakage of gas and the engine gives lesser power output. There is a need to thoroughly understand the reason for valve wear and develop a numerical model that can predict valve fretting wear for the given number of operating hours. Experiments were performed to understand the wear mechanism and derive wear coefficients that can be used in the numerical model. A numerical wear model is built that captures structural stiffness of the valve assembly and wear mechanism at seat contact
Oosthuizen, Gert Adriaan. "Wear characterisation in milling of Ti6Al4V : a wear map approach". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5426.
Pełny tekst źródłaENGLISH ABSTRACT: Information on the milling of Ti6Al4V is limited; with most studies concluding that it is not possible to obtain a significant increase in the material removal rate (Qw). Tool wear maps can be a diagnostic instrument for failure analysis. Cutting speed (vc), maximum un-deformed chip thickness (heMax) and the radial immersion percentage (ae/Ø %) are the key variables in understanding the milling of titanium alloys. The objective of this research study was to construct tool wear maps for the milling of Ti6Al4V. This will form the foundation of understanding the cutting demands on the tool, in order to analyse the main wear mechanisms. Remedial actions, which are developed by tool suppliers, can be considered and integrated via this understanding of the failure modes and related mechanisms. Firstly, experimental data from background studies, literature and industry on wear rates and wear mechanisms pertaining to the milling conditions was gathered to construct the tool wear map. Mathematical models describing the wear behaviour for these conditions were also investigated. Secondly, work piece failure maps have been superimposed onto the tool wear maps constructed to understand the global failure boundaries. Experimentation was carried out to validate the constructed maps. The tool wear map could then be used to discuss the observed effects and consider remedial actions. Cutting speed corresponds to the magnitude of the thermal load and heMax represents the mechanical load. The ae/Ø % defines the duration of the exposure to the thermal load at the edge of the cutting tool. This investigation has shown the following issues to be of importance when considering tool performance via the tool wear map approach: 1. The key to designing tool wear maps is to identify the most economic Scheduled Replacement Time (SRT) for the specific components. Knowing the correct SRT makes it possible to optimize the milling conditions so that the cutting tool wears gradually under the cutting conditions, and lasts longer than the economic SRT. 2. Increased vc will decrease tool life (TL). However, in low transverse rupture strength tools there may be a minimum vc below which mechanical overload may occur. Similarly, a local maximum TL (a sweet spot) may exist if there is a phase change in the work piece material. 3. Increased heMax will decrease TL. However, heMax must be kept below a maximum critical value to avoid mechanical overload, but above a minimum critical value to avoid work hardening. 4. Increased ae/Ø % will decrease TL. The best balance of high Qw and economic TL is found with ae/Ø between 30-40% for rough milling. In finish milling the radial cut is limited to 1 mm finishing stock of the work piece. This study revealed the following important factors when considering work piece failure in the milling of Ti6Al4V: 1. Increased vc will reduce the cutting resistance of the work piece and increase Qw. However, vc must be kept below a maximum critical value to avoid work piece material burn, but above a minimum critical value to avoid burring and poor surface finish, due to tool build-up and chip jamming. 2. Increased heMax will increase the cutting resistance of the work piece and increase Qw. The heMax must be kept below a maximum critical value to avoid poor surface finish, poor flatness and parallelism (due to work piece bending). Likewise, heMax must be kept above a minimum critical value to avoid work hardening and burring. The constructed tool wear maps are validated with experimental work. This research work identified safe zones to productively mill Ti6Al4V, while producing components with a sufficient surface integrity.
AFRIKAANSE OPSOMMING: Inligting rondom freeswerk van Ti6Al4V is beperk en volgens meeste studies is dit nie moontlik om ‗n wesenlike toename in die materiaal verwyderingstempo (Qw) te behaal nie. Snybeitel verwerings kaarte kan ‗n diagnostiese hulpmiddel wees tydens analisering van snybeitels. Snyspoed (vc), maksimum onvervormende spaanderdikte (heMax) en radiale snitdiepte persentasie (ae/Ø %) is die sleutel veranderlikes om die freeswerk van Ti6Al4V beter te kan verstaan. Die doel van die navorsingstudie was om snybeitel verweringskaarte vir die freeswerk van Ti6Al4V te bou. Die werk vorm ‗n fondasie om die eise van freeswerk op die snybeitel beter te verstaan. Sodoende kan die hoof verweringsmeganismes analiseer word. Regstellende aksies wat deur snybeitel vervaardigers ontwikkel is, was ondersoek en integreer met die huidige kennis rondom die falingstipe en verwerings meganismes. Aanvanklik was eksperimentele data van agtergrond studies, literatuur en industrie oor die verweringstempos en -meganismes rondom die freeswerk van Ti6Al4V versamel. Hiermee is verweringskaarte gebou. Wiskundige modelle wat die verwering kan beskryf was ook ondersoek. Daarna was werkstuk falingskaarte integreer met die ontwikkeling van die snybeitel verweringskaarte om sodoende die grense in geheel te verstaan. Eksperimentele werk was gedoen om die snybeitel verweringskaarte se uitleg te toets. Sodoende kon die snybeitel verweringskaarte gebruik word om die gedrag van die snybeitel te bespreek en regstellende aksies te ondersoek. Snyspoed (vc) stem ooreen met die grootte van die termiese lading en heMax verteenwoordig die grootte meganiese lading. Die ae/Ø % omskryf die tydperk van blootstelling aan die termiese lading op die snyrand. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer snybeitel prestasie met die snybeitel verweringskaart evalueer word: 1. Die sleutel tot die ontwerp van snybeitel verweringskaarte is om die mees ekonomies beplande vervangingstyd (SRT) vir spesifieke komponente te identifiseer. Sodoende is dit moontlik om die frees toestande te optimaliseer, waaronder die snybeitels geleidelik sal verweer onder die eise en vir ‗n langer tydperk as die ekonomiese SRT sal kan sny. 2. Toename in vc sal snybeitelleeftyd (TL) laat afneem. Snybeitels met ‗n lae dwarsbreuksterkte, kan ‗n minimum vc hê waaronder meganiese oorlading plaasvind. Terselfdertyd, kan ‗n maksimum TL (‗n ―sweet spot‖) bestaan as daar ‗n fase verandering in die werkstuk materiaal plaasvind. 3. Toename in heMax sal TL laat afneem, maar moet laer as ‗n maksimum- en hoer as ‗n minimum kritiese waarde wees, om sodoende meganiese oorlading en werksverharding onderskeidelik te vermy. 4. Toename in ae/Ø % sal TL laat afneem. Die beste balans tussen TL en ae/Ø % is gevind met ae/Ø % tussen 30-40% vir growwe freeswerk. In afrondingsfreeswerk is die radiale snit beperk tot 1 mm van die oorblywende werkstuk. Die ondersoek het bewys dat die volgende faktore belangrik is wanneer werkstukfaling in ag geneem word met snybeitel verweringskaarte: 1. Toename in vc sal die werkstukweerstand geleidelik verminder en Qw laat toeneem. Ongelukkig is vc beperk tot ‗n maksimum kritiese waarde om werkstukfaling te voorkom weens ‗material burn‘. Die snyspoed moet ook hoër as ‗n kritiese waarde wees om werkstukklitsing en swak afronding weens spaander probleme te vermy. 2. Toename in heMax sal die werkstuk weerstand geleidelik vermeerder en Qw laat toeneem. Die heMax is beperk tot ‗n maksimum kritiese waarde om swak werkstuk afronding, weens die buiging van die werkstuk, te vermy. Terselfdertyd moet heMax hoër as ‗n kritiese waarde wees om werkstukverharding en -klitsing te voorkom. Die saamgestelde snybeitel verweringskaarte was bekragtig met eksperimentele werk. Die navorsingswerk het veiligheidsareas identifiseer om Ti6Al4V produktief te frees, sonder om die werkstukoppervlak krities te beïnvloed.
Uusaro, Alexandra. "Analysis of wear life and mechanical stability for wear steel". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86927.
Pełny tekst źródłaFranklin, Francis James. "Modelling mild wear". Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312780.
Pełny tekst źródłaChen, Yu-Chieh. "Versatile bridal wear". Thesis, Cape Peninsula University of Technology, 2010. http://hdl.handle.net/20.500.11838/1345.
Pełny tekst źródłaIn the 19th and 20th Century, products were manufactured with little concerns for the environment. The result of this was an over flowing of low quality products and a high elimination rate, especially in the fashion industry where constant change is the nature of the business. Particularly in bridal wears, the sustainability is deficient and practicality is limited. bridal garments would only be worn once and are usually highly priced. The purpose of this research is to explore whether consumers are willing to contribute and make a difference to our environment by opting for versatile bridal wear. In order to obtain information regarding the bridal industry of Cape Town. a qualitative approach was applied to ensure that the end products will meet customer needs. Store visits and informal interviews were used as the primary methods. and Internet and magazines were used as secondary methods to gain relative information about the market. The information collected. regarding modem women's opinions on the concept of an interchangeable bridal range, current fashion trends and the concept of Slow Design, forms the foundation to the development of my range - versatile bridal wear. The entire range consists of 14 garment pieces that are interchangeable to form 6 or more looks. This allows the wearer to dress up according to their desires. As a result, these dresses are reusable and thus overcoming the problem of costly garments. which are only worn once.
Kronqvist, J. (Joel). "Wear-resistant materials". Bachelor's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201604211527.
Pełny tekst źródłaHilt, Devin O. "Wedding - To - Wear". Kent State University Honors College / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1493989886206976.
Pełny tekst źródłaBautista, Fernández Christian Hilario, Allende Angel Rafael Delgado, Trucíos Carolina Fuentes Rivera i Franco Sarita Liliana Rentería. "INKA Sport Wear". Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/624698.
Pełny tekst źródłaIn Peru, the practice of swimming is constantly increasing, not only as a hobby in their fans, but also for the benefits this sport offers as it is considered one of the more complete sports. The different sport academies and/or institutions are also part of this increase, considering the new tendency of swimming in pregnant. Therefore, it is necessary to have a swimming suit for facing the specific needs of each client both in size and design of the product caused by the constant demand. The current market lacks of this variety offering unique size and costly products not everyone may purchase which restricts its practice. In this sense, we launched Inka Sport Wear as an inexpensive solution to satisfy the different needs of their clients with innovative, customized swimming suit keeping comfort, quality and durability.
Trabajo de investigación
Lim, S. C. "Wear mechanisms with particular reference to the wear of sintered materials". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372885.
Pełny tekst źródłaKsiążki na temat "Wear"
Fischer, Alfons, i Kirsten Bobzin, red. Friction, Wear and Wear Protection. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. http://dx.doi.org/10.1002/9783527628513.
Pełny tekst źródłaWoodward, Sophie. Why women wear what they wear. Oxford: Berg, 2007.
Znajdź pełny tekst źródłaWoodward, Sophie. Why women wear what they wear. Oxford: Berg, 2007.
Znajdź pełny tekst źródłaInternational Symposium on Friction, Wear and Wear Protection (2008 Aachen, Germany). Friction, wear and wear protection: International Symposium on Friction, Wear and Wear Protection 2008, Aachen, Germany. Weinheim, Germany: Wiley-VCH, 2009.
Znajdź pełny tekst źródłaPluckrose, Henry. Wear it! New York: F. Watts, 1990.
Znajdź pełny tekst źródłaEder, Andrew, i Maurice Faigenblum, red. Tooth Wear. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86110-0.
Pełny tekst źródłaOregon State University. Extension Service., Washington State University. Cooperative Extension., University of Idaho. Cooperative Extension Service. i United States. Dept. of Agriculture., red. Bicycle wear. [Corvallis, Or.]: Oregon State University Extension Service, Washington State University Cooperative Extension Service, the University of Idaho Cooperative Extension Service and the U.S. Dept. of Agriculture, 1986.
Znajdź pełny tekst źródła(Firm), Next. Evening wear. [London?]: Next, 1988.
Znajdź pełny tekst źródłaPluckrose, Henry Arthur, i Henry Pluckrose. Wear it! New York, USA: F. Watts, 1990.
Znajdź pełny tekst źródłaLudema, Kenneth C., i Oyelayo O. Ajayi. Friction, Wear, Lubrication. Second edition. | Boca Raton : Taylor & Francis, CRC Press,[2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429444715.
Pełny tekst źródłaCzęści książek na temat "Wear"
Carter, A. D. S. "Wear and wear-out". W Mechanical Reliability and Design, 81–123. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14487-7_6.
Pełny tekst źródłaLa Berge, M. "Wear". W Handbook of Biomaterial Properties, 364–405. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5801-9_23.
Pełny tekst źródłaJin, Chunming, i Wei Wei. "Wear". W Biomedical Materials, 365–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_10.
Pełny tekst źródłaTönshoff, Hans Kurt, i Berend Denkena. "Wear". W Lecture Notes in Production Engineering, 129–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33257-9_7.
Pełny tekst źródłaArnell, R. D., P. B. Davies, J. Halling i T. L. Whomes. "Wear". W Tribology, 66–95. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21387-0_3.
Pełny tekst źródłaArnell, R. D., P. B. Davies, J. Halling i T. L. Whomes. "Wear". W Tribology, 66–95. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-8974-3_3.
Pełny tekst źródłaPopov, Valentin L. "Wear". W Contact Mechanics and Friction, 271–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10803-7_17.
Pełny tekst źródłaJin, Chunming, i Wei Wei. "Wear". W Biomedical Materials, 183–99. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84872-3_6.
Pełny tekst źródłaBriscoe, B. J., i S. K. Sinha. "Wear". W Polymer Science and Technology Series, 270–77. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9231-4_59.
Pełny tekst źródłaBonneau, Dominique, Aurelian Fatu i Dominique Souchet. "Wear". W Mixed Lubrication in Hydrodynamic Bearings, 155–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004905.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Wear"
Hill, William C., James D. Hollan, Dave Wroblewski i Tim McCandless. "Edit wear and read wear". W the SIGCHI conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/142750.142751.
Pełny tekst źródłaLin, Zhen. "Abrasive Wear and Fatigue Wear". W 2016 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/wartia-16.2016.238.
Pełny tekst źródła"ADHESIVE WEAR AND PARTICLE EMISSION: TRANSITIONS BETWEEN LEAST WEAR, MILD WEAR AND SEVERE WEAR". W Perspektivnye materialy s ierarkhicheskoy strukturoy dlya novykh tekhnologiy i nadezhnykh konstruktsiy, Khimiya nefti i gaza. Tomsk State University, 2018. http://dx.doi.org/10.17223/9785946217408/8.
Pełny tekst źródłaScherrer, Camille, i Julien Pilet. "Happy wear". W ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies: Adaptation. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665137.1665170.
Pełny tekst źródłaJin, Haojian, Jingxian Wang, Zhijian Yang, Swarun Kumar i Jason Hong. "RF-Wear". W UbiComp '18: The 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3267305.3267567.
Pełny tekst źródłaSantagati, G. Enrico, i Tommaso Melodia. "U-Wear". W MobiSys'15: The 13th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2742647.2742655.
Pełny tekst źródłaBrady, Brian G. "Fretting Wear". W Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901786.
Pełny tekst źródłaKanebako, Junichi, Naoya Watabe, Miki Yamamura, Haruki Nakamura, Keisuke Shuto i Hiroko Uchiyama. "Sympathetic wear". W SIGGRAPH '22: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3532837.3534955.
Pełny tekst źródłaOsman, Omer Alnoor, Necar Merah, Robello Samuel, Meshari Alshalan i Amjad Alshaarawi. "Casing Wear Tests for Precise Wear Factor Evaluation". W IADC/SPE International Drilling Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/208775-ms.
Pełny tekst źródłaPark, Kyung-Hee, i Patrick Y. Kwon. "Flank Wear of Multi-Layer Coated Tool and Wear Prediction Using Abrasion Wear Model". W ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84100.
Pełny tekst źródłaRaporty organizacyjne na temat "Wear"
Wakenell, J. F., S. G. Fritz i J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing. Office of Scientific and Technical Information (OSTI), lipiec 1991. http://dx.doi.org/10.2172/10123688.
Pełny tekst źródłaHudson, Joel B. Beret Wear Policy. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2001. http://dx.doi.org/10.21236/ada402249.
Pełny tekst źródłaAshby, M. F. Wear-mechanism modelling. Office of Scientific and Technical Information (OSTI), marzec 1993. http://dx.doi.org/10.2172/6447701.
Pełny tekst źródłaBracuti, A. J., i R. Field. Wear Reducing Additives. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2002. http://dx.doi.org/10.21236/ada410070.
Pełny tekst źródłaBlack, Catherine. Women’s Wear Daily. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-554.
Pełny tekst źródłaWakenell, J. F., S. G. Fritz i J. A. Schwalb. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), lipiec 1991. http://dx.doi.org/10.2172/5552534.
Pełny tekst źródłaSchwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), czerwiec 1991. http://dx.doi.org/10.2172/5552551.
Pełny tekst źródłaSchwalb, J. A., i T. W. Ryan. Wear mechanism and wear prevention in coal-fueled diesel engines. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5637939.
Pełny tekst źródłaSchwalb, J. A. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention. Office of Scientific and Technical Information (OSTI), czerwiec 1991. http://dx.doi.org/10.2172/10123538.
Pełny tekst źródłaJewsbury, P. The WAFTER (Wear and Friction Tester): A Versatile Wear and Friction Tester. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1987. http://dx.doi.org/10.21236/ada187596.
Pełny tekst źródła