Artykuły w czasopismach na temat „WD40-repeat proteins”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „WD40-repeat proteins”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Yang, Xue-Jia Hu, Xu-Dong Zou, Xian-Hui Wu, Zhi-Qiang Ye i Yun-Dong Wu. "WDSPdb: a database for WD40-repeat proteins". Nucleic Acids Research 43, nr D1 (27.10.2014): D339—D344. http://dx.doi.org/10.1093/nar/gku1023.
Pełny tekst źródłaDell, Edward J., Jennifer Connor, Songhai Chen, Elizabeth G. Stebbins, Nikolai P. Skiba, Daria Mochly-Rosen i Heidi E. Hamm. "The βγ Subunit of Heterotrimeric G Proteins Interacts with RACK1 and Two Other WD Repeat Proteins". Journal of Biological Chemistry 277, nr 51 (30.09.2002): 49888–95. http://dx.doi.org/10.1074/jbc.m202755200.
Pełny tekst źródłaSong, Richard, Zhong-Duo Wang i Matthieu Schapira. "Disease Association and Druggability of WD40 Repeat Proteins". Journal of Proteome Research 16, nr 10 (28.09.2017): 3766–73. http://dx.doi.org/10.1021/acs.jproteome.7b00451.
Pełny tekst źródłaSchapira, Matthieu, Mike Tyers, Maricel Torrent i Cheryl H. Arrowsmith. "WD40 repeat domain proteins: a novel target class?" Nature Reviews Drug Discovery 16, nr 11 (13.10.2017): 773–86. http://dx.doi.org/10.1038/nrd.2017.179.
Pełny tekst źródłaJain, Buddhi Prakash, i Shweta Pandey. "WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions". Protein Journal 37, nr 5 (1.08.2018): 391–406. http://dx.doi.org/10.1007/s10930-018-9785-7.
Pełny tekst źródłaSuganuma, T., S. G. Pattenden i J. L. Workman. "Diverse functions of WD40 repeat proteins in histone recognition". Genes & Development 22, nr 10 (15.05.2008): 1265–68. http://dx.doi.org/10.1101/gad.1676208.
Pełny tekst źródłaTian, Yue, Jingjing Du, Huaitong Wu, Xueying Guan, Weihang Chen, Yan Hu, Lei Fang i in. "The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton". Journal of Experimental Botany 71, nr 12 (2.03.2020): 3499–511. http://dx.doi.org/10.1093/jxb/eraa104.
Pełny tekst źródłaCho, Pyo Yun, Tae Im Kim, Shunyu Li, Sung-Jong Hong, Min-Ho Choi, Sung-Tae Hong i Yong Je Chung. "Metacercarial proteins interacting with WD40-repeat protein of Clonorchis sinensis". Korean Journal of Parasitology 45, nr 3 (2007): 229. http://dx.doi.org/10.3347/kjp.2007.45.3.229.
Pełny tekst źródłaKim, Tae Im, Pyo Yun Cho, Shunyu Li, Sung-Tae Hong, Min-Ho Choi i Sung-Jong Hong. "Partner proteins that interact with Clonorchis sinensis WD40-repeat protein". Parasitology Research 101, nr 5 (6.07.2007): 1233–38. http://dx.doi.org/10.1007/s00436-007-0625-5.
Pełny tekst źródłaEugster, Anne, Gabriella Frigerio, Martin Dale i Rainer Duden. "The α- and β′-COP WD40 Domains Mediate Cargo-selective Interactions with Distinct Di-lysine Motifs". Molecular Biology of the Cell 15, nr 3 (marzec 2004): 1011–23. http://dx.doi.org/10.1091/mbc.e03-10-0724.
Pełny tekst źródłaSalih, Haron, Wenfang Gong, Mtawa Mkulama i Xiongming Du. "Genome-wide characterization, identification, and expression analysis of the WD40 protein family in cotton". Genome 61, nr 7 (lipiec 2018): 539–47. http://dx.doi.org/10.1139/gen-2017-0237.
Pełny tekst źródłaMills, Ryan D., Terrence D. Mulhern, Heung-Chin Cheng i Janetta G. Culvenor. "Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations". Biochemical Society Transactions 40, nr 5 (19.09.2012): 1086–89. http://dx.doi.org/10.1042/bst20120088.
Pełny tekst źródłaKim, Yeonjoo, i Soo-Hyun Kim. "WD40-Repeat Proteins in Ciliopathies and Congenital Disorders of Endocrine System". Endocrinology and Metabolism 35, nr 3 (30.09.2020): 494–506. http://dx.doi.org/10.3803/enm.2020.302.
Pełny tekst źródłaCHEN, S. "Interaction of G?? with RACK1 and other WD40 repeat proteins*1". Journal of Molecular and Cellular Cardiology 37, nr 2 (sierpień 2004): 399–406. http://dx.doi.org/10.1016/j.yjmcc.2004.04.019.
Pełny tekst źródłaMa, Jing, Ke An, Jing-Bo Zhou, Nuo-Si Wu, Yang Wang, Zhi-Qiang Ye i Yun-Dong Wu. "WDSPdb: an updated resource for WD40 proteins". Bioinformatics 35, nr 22 (4.06.2019): 4824–26. http://dx.doi.org/10.1093/bioinformatics/btz460.
Pełny tekst źródłaSepulveda-Garcia, Edgar, Elena C. Fulton, Emily V. Parlan, Lily E. O’Connor, Anneke A. Fleming, Amy J. Replogle, Mario Rocha-Sosa, Joshua M. Gendron i Bryan Thines. "Unique N-Terminal Interactions Connect F-BOX STRESS INDUCED (FBS) Proteins to a WD40 Repeat-like Protein Pathway in Arabidopsis". Plants 10, nr 10 (19.10.2021): 2228. http://dx.doi.org/10.3390/plants10102228.
Pełny tekst źródłaZhao, Li, Zhu, Chang, Li i Zhang. "Identification and Characterization of MYB-bHLH-WD40 Regulatory Complex Members Controlling Anthocyanidin Biosynthesis in Blueberry Fruits Development". Genes 10, nr 7 (28.06.2019): 496. http://dx.doi.org/10.3390/genes10070496.
Pełny tekst źródłaRunne, Caitlin, i Songhai Chen. "WD40-repeat proteins control the flow of Gβγ signaling for directional cell migration". Cell Adhesion & Migration 7, nr 2 (marzec 2013): 214–18. http://dx.doi.org/10.4161/cam.22940.
Pełny tekst źródłaJeffries, Tim R., Stephen K. Dove, Robert H. Michell i Peter J. Parker. "PtdIns-specific MPR Pathway Association of a Novel WD40 Repeat Protein, WIPI49". Molecular Biology of the Cell 15, nr 6 (czerwiec 2004): 2652–63. http://dx.doi.org/10.1091/mbc.e03-10-0732.
Pełny tekst źródłaFukumoto, Yasunori, Naoshi Dohmae i Fumio Hanaoka. "Schizosaccharomyces pombe Ddb1 Recruits Substrate-Specific Adaptor Proteins through a Novel Protein Motif, the DDB-Box". Molecular and Cellular Biology 28, nr 22 (15.09.2008): 6746–56. http://dx.doi.org/10.1128/mcb.00757-08.
Pełny tekst źródłaPöggeler, Stefanie, i Ulrich Kück. "A WD40 Repeat Protein Regulates Fungal Cell Differentiation and Can Be Replaced Functionally by the Mammalian Homologue Striatin". Eukaryotic Cell 3, nr 1 (luty 2004): 232–40. http://dx.doi.org/10.1128/ec.3.1.232-240.2004.
Pełny tekst źródłaHiga, Leigh Ann, Min Wu, Tao Ye, Ryuji Kobayashi, Hong Sun i Hui Zhang. "CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation". Nature Cell Biology 8, nr 11 (15.10.2006): 1277–83. http://dx.doi.org/10.1038/ncb1490.
Pełny tekst źródłaGurung, Raju, Darlami Om, Rabin Pun, Soonsil Hyun i Dongyun Shin. "Recent Progress in Modulation of WD40-Repeat Domain 5 Protein (WDR5): Inhibitors and Degraders". Cancers 15, nr 15 (1.08.2023): 3910. http://dx.doi.org/10.3390/cancers15153910.
Pełny tekst źródłaArıkan, Burcu, Aslı Semercі, Ozgur Cakır i Kara Turgut. "Arabidopsis thaliana GTS1 transcripts are activated by yeast extract". Botanica Serbica 45, nr 2 (2021): 195–201. http://dx.doi.org/10.2298/botserb2102195a.
Pełny tekst źródłaWu, Guangyu, Svetlana Lyapina, Indranil Das, Jinhe Li, Mark Gurney, Adele Pauley, Inca Chui, Raymond J. Deshaies i Jan Kitajewski. "SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein Degradation". Molecular and Cellular Biology 21, nr 21 (1.11.2001): 7403–15. http://dx.doi.org/10.1128/mcb.21.21.7403-7415.2001.
Pełny tekst źródłaPashkova, Natasha, Lokesh Gakhar, Stanley C. Winistorfer, Liping Yu, S. Ramaswamy i Robert C. Piper. "WD40 Repeat Propellers Define a Ubiquitin-Binding Domain that Regulates Turnover of F Box Proteins". Molecular Cell 40, nr 3 (listopad 2010): 433–43. http://dx.doi.org/10.1016/j.molcel.2010.10.018.
Pełny tekst źródłaMarçal, Nathalie, Harshila Patel, Zhifeng Dong, Stephanie Belanger-Jasmin, Brad Hoffman, Cheryl D. Helgason, Jinjun Dang i Stefano Stifani. "Antagonistic Effects of Grg6 and Groucho/TLE on the Transcription Repression Activity of Brain Factor 1/FoxG1 and Cortical Neuron Differentiation". Molecular and Cellular Biology 25, nr 24 (15.12.2005): 10916–29. http://dx.doi.org/10.1128/mcb.25.24.10916-10929.2005.
Pełny tekst źródłaImran, Ali, Brandon S. Moyer, Ashley J. Canning, Dan Kalina, Thomas M. Duncan, Kelsey J. Moody, Aaron J. Wolfe, Michael S. Cosgrove i Liviu Movileanu. "Kinetics of the multitasking high-affinity Win binding site of WDR5 in restricted and unrestricted conditions". Biochemical Journal 478, nr 11 (11.06.2021): 2145–61. http://dx.doi.org/10.1042/bcj20210253.
Pełny tekst źródłaKannan, Meghna, Efil Bayam, Christel Wagner, Bruno Rinaldi, Perrine F. Kretz, Peggy Tilly, Marna Roos i in. "WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy". Proceedings of the National Academy of Sciences 114, nr 44 (12.10.2017): E9308—E9317. http://dx.doi.org/10.1073/pnas.1713625114.
Pełny tekst źródłaDou, Xiaoying, Jinrong Bai, Huan Wang, Ying Kong, Lixin Lang, Fang Bao i Hongzhong Shang. "Cloning and Characterization of a Tryptophan–Aspartic Acid Repeat Gene Associated with the Regulation of Anthocyanin Biosynthesis in Oriental Hybrid Lily". Journal of the American Society for Horticultural Science 145, nr 2 (marzec 2020): 131–40. http://dx.doi.org/10.21273/jashs04791-19.
Pełny tekst źródłaClose, Viola, William Close, Sabrina Julia Kugler, Michaela Reichenzeller, Deyan Yordanov Yosifov, Johannes Bloehdorn, Leiling Pan i in. "FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL". Blood 133, nr 8 (21.02.2019): 830–39. http://dx.doi.org/10.1182/blood-2018-09-874529.
Pełny tekst źródłaMascheretti, Iride, Raffaella Battaglia, Davide Mainieri, Andrea Altana, Massimiliano Lauria i Vincenzo Rossi. "The WD40-Repeat Proteins NFC101 and NFC102 Regulate Different Aspects of Maize Development through Chromatin Modification". Plant Cell 25, nr 2 (luty 2013): 404–20. http://dx.doi.org/10.1105/tpc.112.107219.
Pełny tekst źródłaWu, Xian-Hui, Rong-Chang Chen, Ying Gao i Yun-Dong Wu. "The Effect of Asp-His-Ser/Thr-Trp Tetrad on the Thermostability of WD40-Repeat Proteins". Biochemistry 49, nr 47 (30.11.2010): 10237–45. http://dx.doi.org/10.1021/bi101321y.
Pełny tekst źródłaLan, Jingqiu, Jinzhe Zhang, Rongrong Yuan, Hao Yu, Fengying An, Linhua Sun, Haodong Chen i in. "TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex". Plant Physiology 186, nr 1 (12.02.2021): 434–51. http://dx.doi.org/10.1093/plphys/kiab053.
Pełny tekst źródłaLiu, Xuezhao, Yang Li, Xin Wang, Ruxiao Xing, Kai Liu, Qiwen Gan, Changyong Tang i in. "The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy". Journal of Cell Biology 216, nr 5 (12.04.2017): 1301–20. http://dx.doi.org/10.1083/jcb.201608039.
Pełny tekst źródłaEspagne, Eric, Pascale Balhadère, Marie-Louise Penin, Christian Barreau i Béatrice Turcq. "HET-E and HET-D Belong to a New Subfamily of WD40 Proteins Involved in Vegetative Incompatibility Specificity in the Fungus Podospora anserina". Genetics 161, nr 1 (1.05.2002): 71–81. http://dx.doi.org/10.1093/genetics/161.1.71.
Pełny tekst źródłaWen, Danni, Lingran Bao, Xuanzhu Huang, Xueduo Qian, Eryong Chen i Bo Shen. "OsABT Is Involved in Abscisic Acid Signaling Pathway and Salt Tolerance of Roots at the Rice Seedling Stage". International Journal of Molecular Sciences 23, nr 18 (13.09.2022): 10656. http://dx.doi.org/10.3390/ijms231810656.
Pełny tekst źródłaGadelha, Renan Brito, Caio Bezerra Machado, Flávia Melo Cunha de Pinho Pessoa, Laudreísa da Costa Pantoja, Igor Valentim Barreto, Rodrigo Monteiro Ribeiro, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat i Caroline Aquino Moreira-Nunes. "The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset". Current Issues in Molecular Biology 44, nr 11 (4.11.2022): 5498–515. http://dx.doi.org/10.3390/cimb44110372.
Pełny tekst źródłaTwiddy, Davina, David G. Brown, Colin Adrain, Rebekah Jukes, Seamus J. Martin, Gerald M. Cohen, Marion MacFarlane i Kelvin Cain. "Pro-apoptotic Proteins Released from the Mitochondria Regulate the Protein Composition and Caspase-processing Activity of the Native Apaf-1/Caspase-9 Apoptosome Complex". Journal of Biological Chemistry 279, nr 19 (1.03.2004): 19665–82. http://dx.doi.org/10.1074/jbc.m311388200.
Pełny tekst źródłaPodolec, Roman, Emilie Demarsy i Roman Ulm. "Perception and Signaling of Ultraviolet-B Radiation in Plants". Annual Review of Plant Biology 72, nr 1 (17.06.2021): 793–822. http://dx.doi.org/10.1146/annurev-arplant-050718-095946.
Pełny tekst źródłaMahajan, Mayank, Benjamin Yee, Emil Hägglund, Lionel Guy, John A. Fuerst i Siv G. E. Andersson. "Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures". Molecular Biology and Evolution 37, nr 4 (11.12.2019): 1020–40. http://dx.doi.org/10.1093/molbev/msz287.
Pełny tekst źródłaHodul, Molly, Rakesh Ganji, Caroline L. Dahlberg, Malavika Raman i Peter Juo. "The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation". Journal of Biological Chemistry 295, nr 33 (25.06.2020): 11776–88. http://dx.doi.org/10.1074/jbc.ra120.014590.
Pełny tekst źródłaBalk, Janneke, Daili J. Aguilar Netz, Katharina Tepper, Antonio J. Pierik i Roland Lill. "The Essential WD40 Protein Cia1 Is Involved in a Late Step of Cytosolic and Nuclear Iron-Sulfur Protein Assembly". Molecular and Cellular Biology 25, nr 24 (15.12.2005): 10833–41. http://dx.doi.org/10.1128/mcb.25.24.10833-10841.2005.
Pełny tekst źródłaMoreno, Carlos S., Susan Park, Kasey Nelson, Danita Ashby, Frantisek Hubalek, William S. Lane i David C. Pallas. "WD40 Repeat Proteins Striatin and S/G2Nuclear Autoantigen Are Members of a Novel Family of Calmodulin-binding Proteins That Associate with Protein Phosphatase 2A". Journal of Biological Chemistry 275, nr 8 (25.02.2000): 5257–63. http://dx.doi.org/10.1074/jbc.275.8.5257.
Pełny tekst źródłaWu, Xian-Hui, Hui Zhang i Yun-Dong Wu. "Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: A statistical and theoretical study". Proteins: Structure, Function, and Bioinformatics 78, nr 5 (16.10.2009): 1186–94. http://dx.doi.org/10.1002/prot.22638.
Pełny tekst źródłaWu, Xian-Hui, Yang Wang, Zhu Zhuo, Fan Jiang i Yun-Dong Wu. "Identifying the Hotspots on the Top Faces of WD40-Repeat Proteins from Their Primary Sequences by β-Bulges and DHSW Tetrads". PLoS ONE 7, nr 8 (15.08.2012): e43005. http://dx.doi.org/10.1371/journal.pone.0043005.
Pełny tekst źródłaYu, Shiyi, Zhengyan Liang, Zhehao Fan, Binjie Cao, Ning Wang, Rui Wu i Haibo Sun. "A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer". International Journal of Molecular Sciences 24, nr 6 (9.03.2023): 5262. http://dx.doi.org/10.3390/ijms24065262.
Pełny tekst źródłaSuzuki, Hiroshi, Tomoki Chiba, Masato Kobayashi, Masahiro Takeuchi, Toshiaki Suzuki, Arata Ichiyama, Tsuneo Ikenoue, Masao Omata, Kiyoshi Furuichi i Keiji Tanaka. "IκBα Ubiquitination Is Catalyzed by an SCF-like Complex Containing Skp1, Cullin-1, and Two F-Box/WD40-Repeat Proteins, βTrCP1 and βTrCP2". Biochemical and Biophysical Research Communications 256, nr 1 (marzec 1999): 127–32. http://dx.doi.org/10.1006/bbrc.1999.0289.
Pełny tekst źródłaLi, Qiuhong, Leifu Chang, Shintaro Aibara, Jing Yang, Ziguo Zhang i David Barford. "WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity". Proceedings of the National Academy of Sciences 113, nr 38 (6.09.2016): 10547–52. http://dx.doi.org/10.1073/pnas.1607147113.
Pełny tekst źródłaChen, Siyu, i Shucai Wang. "GLABRA2, a Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis". International Journal of Molecular Sciences 20, nr 20 (9.10.2019): 4997. http://dx.doi.org/10.3390/ijms20204997.
Pełny tekst źródła