Artykuły w czasopismach na temat „Wave based models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Wave based models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Firdaus, Nurman, Baharuddin Ali, Mochammad Nasir i M. Muryadin. "The Wave Heights Distribution of Random Wave Based on Ocean Basin". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 17, nr 3 (1.10.2020): 114–22. http://dx.doi.org/10.14710/kapal.v17i3.31021.
Pełny tekst źródłaJialei, Lv, Shi Jian, Zhang Wenjing, Xia Jingmin i Wang Qianhui. "Numerical simulations on waves in the Northwest Pacific Ocean based on SWAN models". Journal of Physics: Conference Series 2486, nr 1 (1.05.2023): 012034. http://dx.doi.org/10.1088/1742-6596/2486/1/012034.
Pełny tekst źródłaZhang, Huichen, i Markus Brühl. "GENERATION OF EXTREME TRANSIENT WAVES IN EXPERIMENTAL MODELS". Coastal Engineering Proceedings, nr 36 (30.12.2018): 51. http://dx.doi.org/10.9753/icce.v36.waves.51.
Pełny tekst źródłaBAL, GUILLAUME, i OLIVIER PINAUD. "IMAGING USING TRANSPORT MODELS FOR WAVE–WAVE CORRELATIONS". Mathematical Models and Methods in Applied Sciences 21, nr 05 (maj 2011): 1071–93. http://dx.doi.org/10.1142/s0218202511005258.
Pełny tekst źródłaPruser, H. H., H. Schaper i W. Zielke. "IRREGULAR WAVE TRANSFORMATION IN A BOUSSINESO WAVE MODEL". Coastal Engineering Proceedings 1, nr 20 (29.01.1986): 205. http://dx.doi.org/10.9753/icce.v20.205.
Pełny tekst źródłaMori, Nobuhito, Joao Morim, Mark Hemer, Xiaolan L. Wang i COWCLIP Project. "ENSEMBLE WAVE CLIMATE PROJECTIONS BASED ON CMIP5 MODELS". Coastal Engineering Proceedings, nr 36v (28.12.2020): 23. http://dx.doi.org/10.9753/icce.v36v.waves.23.
Pełny tekst źródłaHernandez-Duenas, Gerardo, Leslie M. Smith i Samuel N. Stechmann. "Investigation of Boussinesq dynamics using intermediate models based on wave–vortical interactions". Journal of Fluid Mechanics 747 (15.04.2014): 247–87. http://dx.doi.org/10.1017/jfm.2014.138.
Pełny tekst źródłaGogin, Aleksandr G., i Izmail G. Kantarzhi. "Numerical simulation of sea-wave diffraction with random phases on breakwaters". Vestnik MGSU, nr 4 (kwiecień 2023): 615–26. http://dx.doi.org/10.22227/1997-0935.2023.4.615-626.
Pełny tekst źródłaSU, MING, GARY G. YEN i R. R. RHINEHART. "GA-BASED TIME SERIES MODELS WITH THRESHOLD IN TWO DOMAINS". Journal of Circuits, Systems and Computers 18, nr 04 (czerwiec 2009): 801–23. http://dx.doi.org/10.1142/s021812660900537x.
Pełny tekst źródłaZhang, Jun. "Hybrid Wave Models and Their Applications for Steep Ocean Waves". Marine Technology Society Journal 33, nr 3 (1.01.1999): 15–26. http://dx.doi.org/10.4031/mtsj.33.3.3.
Pełny tekst źródłaLondhe, S. N., i Vijay Panchang. "One-Day Wave Forecasts Based on Artificial Neural Networks". Journal of Atmospheric and Oceanic Technology 23, nr 11 (1.11.2006): 1593–603. http://dx.doi.org/10.1175/jtech1932.1.
Pełny tekst źródłaKyaw, Thit Oo, Tomoya Shibayama, Yoko Shibutani i Yasuo Kotake. "DEVELOPMENT OF A DEEP-LEARNING BASED WAVE FORECASTING MODEL USING LSTM NETWORK". Coastal Engineering Proceedings, nr 36v (28.12.2020): 31. http://dx.doi.org/10.9753/icce.v36v.waves.31.
Pełny tekst źródłaVogel, J. A., A. C. Radder i J. H. De Reus. "VERIFICATION OF NUMERICAL WAVE PROPAGATION MODELS IN TIDAL INLETS". Coastal Engineering Proceedings 1, nr 21 (29.01.1988): 30. http://dx.doi.org/10.9753/icce.v21.30.
Pełny tekst źródłaPenalba, Markel, i John V. Ringwood. "Linearisation-based nonlinearity measures for wave-to-wire models in wave energy". Ocean Engineering 171 (styczeń 2019): 496–504. http://dx.doi.org/10.1016/j.oceaneng.2018.11.033.
Pełny tekst źródłaSaprykina, Yana, Burak Aydogan i Berna Ayat. "MODELLING OF SPILLING AND PLUNGING BREAKING WAVES IN SPECTRAL MODELS". Coastal Engineering Proceedings, nr 37 (1.09.2023): 15. http://dx.doi.org/10.9753/icce.v37.papers.15.
Pełny tekst źródłaErn, Manfred, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III i Martin Riese. "GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings". Earth System Science Data 10, nr 2 (27.04.2018): 857–92. http://dx.doi.org/10.5194/essd-10-857-2018.
Pełny tekst źródłaKhoirunnisa, H., G. R. Pasma i G. Gumbira. "Numerical modeling of return period waves based on non-linear Boussinesq wave models to support tidal flood studies in the Kedungsepur area". IOP Conference Series: Earth and Environmental Science 1224, nr 1 (1.08.2023): 012020. http://dx.doi.org/10.1088/1755-1315/1224/1/012020.
Pełny tekst źródłaSidler, Rolf. "A porosity-based Biot model for acoustic waves in snow". Journal of Glaciology 61, nr 228 (2015): 789–98. http://dx.doi.org/10.3189/2015jog15j040.
Pełny tekst źródłaLuo, Feng, Yao Feng, Guisheng Liao i Linrang Zhang. "The Dynamic Sea Clutter Simulation of Shore-Based Radar Based on Stokes Waves". Remote Sensing 14, nr 16 (12.08.2022): 3915. http://dx.doi.org/10.3390/rs14163915.
Pełny tekst źródłaGuérin, Charles-Antoine, Nicolas Desmars, Stéphan T. Grilli, Guillaume Ducrozet, Yves Perignon i Pierre Ferrant. "An improved Lagrangian model for the time evolution of nonlinear surface waves". Journal of Fluid Mechanics 876 (1.08.2019): 527–52. http://dx.doi.org/10.1017/jfm.2019.519.
Pełny tekst źródłaSmit, P. B., T. T. Janssen i T. H. C. Herbers. "Stochastic Modeling of Coherent Wave Fields over Variable Depth". Journal of Physical Oceanography 45, nr 4 (kwiecień 2015): 1139–54. http://dx.doi.org/10.1175/jpo-d-14-0219.1.
Pełny tekst źródłaPierson, Willard J., i Azed Jean-Pierre. "Monte Carlo Simulations of Nonlinear Ocean Wave Records with Implications for Models of Breaking Waves". Journal of Ship Research 43, nr 02 (1.06.1999): 121–34. http://dx.doi.org/10.5957/jsr.1999.43.2.121.
Pełny tekst źródłaDiaz Loaiza, Manuel Andres, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe i Sebastiaan N. Jonkman. "Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations". Natural Hazards and Earth System Sciences 22, nr 2 (8.02.2022): 345–60. http://dx.doi.org/10.5194/nhess-22-345-2022.
Pełny tekst źródłaGagarina, E., J. van der Vegt i O. Bokhove. "Horizontal circulation and jumps in Hamiltonian wave models". Nonlinear Processes in Geophysics 20, nr 4 (12.07.2013): 483–500. http://dx.doi.org/10.5194/npg-20-483-2013.
Pełny tekst źródłaFollett, R. K., A. Colaïtis, D. Turnbull, D. H. Froula i J. P. Palastro. "Validation of ray-based cross-beam energy transfer models". Physics of Plasmas 29, nr 11 (listopad 2022): 113902. http://dx.doi.org/10.1063/5.0123462.
Pełny tekst źródłaHolman, Kathleen D., David J. Lorenz i Michael Notaro. "Influence of the Background State on Rossby Wave Propagation into the Great Lakes Region Based on Observations and Model Simulations*". Journal of Climate 27, nr 24 (10.12.2014): 9302–22. http://dx.doi.org/10.1175/jcli-d-13-00758.1.
Pełny tekst źródłaShi, Jiao, Tianyun Su, Xinfang Li, Fuwei Wang, Jingjing Cui, Zhendong Liu i Jie Wang. "A Machine-Learning Approach Based on Attention Mechanism for Significant Wave Height Forecasting". Journal of Marine Science and Engineering 11, nr 9 (19.09.2023): 1821. http://dx.doi.org/10.3390/jmse11091821.
Pełny tekst źródłaStephan, Claudia, M. Joan Alexander i Jadwiga H. Richter. "Characteristics of Gravity Waves from Convection and Implications for Their Parameterization in Global Circulation Models". Journal of the Atmospheric Sciences 73, nr 7 (24.06.2016): 2729–42. http://dx.doi.org/10.1175/jas-d-15-0303.1.
Pełny tekst źródłaStosic, Biljana. "Wave-based digital models of different branch-line couplers". Serbian Journal of Electrical Engineering 17, nr 2 (2020): 149–69. http://dx.doi.org/10.2298/sjee2002149s.
Pełny tekst źródłaDrzewiecki, Marcin. "The Propagation of the Waves in the CTO S.A. Towing Tank". Polish Maritime Research 25, s1 (1.05.2018): 22–28. http://dx.doi.org/10.2478/pomr-2018-0018.
Pełny tekst źródłaMohapatra, Sarat Chandra, Hafizul Islam, Thiago S. Hallak i C. Guedes Soares. "Solitary Wave Interaction with a Floating Pontoon Based on Boussinesq Model and CFD-Based Simulations". Journal of Marine Science and Engineering 10, nr 9 (5.09.2022): 1251. http://dx.doi.org/10.3390/jmse10091251.
Pełny tekst źródłaWeymouth, Gabriel D., i Dick K. P. Yue. "Physics-Based Learning Models for Ship Hydrodynamics". Journal of Ship Research 57, nr 01 (1.03.2013): 1–12. http://dx.doi.org/10.5957/jsr.2013.57.1.1.
Pełny tekst źródłaUday A. Alturfi i Abdul-Hassan K. Shukur. "Investigation of Energy Dissipation for Different Breakwater Based on Computational Fluid Dynamic Model". CFD Letters 16, nr 1 (29.11.2023): 22–42. http://dx.doi.org/10.37934/cfdl.16.1.2242.
Pełny tekst źródłaBabanin, Alexander V., i AndréJ van der Westhuysen. "Physics of “Saturation-Based” Dissipation Functions Proposed for Wave Forecast Models". Journal of Physical Oceanography 38, nr 8 (1.08.2008): 1831–41. http://dx.doi.org/10.1175/2007jpo3874.1.
Pełny tekst źródłaCova, Raul, David Henley i Kristopher A. Innanen. "Computing near-surface velocity models for S-wave static corrections using raypath interferometry". GEOPHYSICS 83, nr 3 (1.05.2018): U23—U34. http://dx.doi.org/10.1190/geo2017-0340.1.
Pełny tekst źródłaVan Duin, Cornelis A. "Rapid-distortion turbulence models in the theory of surface-wave generation". Journal of Fluid Mechanics 329 (25.12.1996): 147–53. http://dx.doi.org/10.1017/s0022112096008877.
Pełny tekst źródłaYANG, DI, i LIAN SHEN. "Direct-simulation-based study of turbulent flow over various waving boundaries". Journal of Fluid Mechanics 650 (24.03.2010): 131–80. http://dx.doi.org/10.1017/s0022112009993557.
Pełny tekst źródłaNguyen, Thao Danh, i Duy The Nguyen. "SIMULATION OF WAVE PRESSURE ON A VERTICAL WALL BASED ON 2-D NAVIER-STOKES EQUATIONS". Science and Technology Development Journal 12, nr 18 (15.12.2009): 59–68. http://dx.doi.org/10.32508/stdj.v12i18.2384.
Pełny tekst źródłaPawlak, Dawid, i Jan M. Kelner. "Directional link attenuation in millimeter-wave range based on empirical model modification". Bulletin of the Military University of Technology 71, nr 3 (30.09.2022): 69–92. http://dx.doi.org/10.5604/01.3001.0053.6745.
Pełny tekst źródłaBennetts, L. G., i T. D. Williams. "Water wave transmission by an array of floating discs". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, nr 2173 (styczeń 2015): 20140698. http://dx.doi.org/10.1098/rspa.2014.0698.
Pełny tekst źródłaWei, Chih-Chiang, i Hao-Chun Chang. "Forecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurements". Sensors 21, nr 15 (2.08.2021): 5234. http://dx.doi.org/10.3390/s21155234.
Pełny tekst źródłaLowe, Ryan J., Corrado Altomare, Mark Buckley, Renan da Silva, Jeff Hansen i Dirk Rijnsdorp, Jose Dominguez, Alejandro Crespo. "NONHYDROSTATIC AND MESH-FREE COMPUTATIONAL FLUID DYNAMICS MODEL COMPARISONS OF SURF ZONE HYDRODYNAMICS BY PLUNGING IRREGULAR WAVES". Coastal Engineering Proceedings, nr 37 (1.09.2023): 11. http://dx.doi.org/10.9753/icce.v37.currents.11.
Pełny tekst źródłaPoghosyan, Ruben, i Yuan Luo. "Random Convolutional Kernels for Space-Detector Based Gravitational Wave Signals". Electronics 12, nr 20 (20.10.2023): 4360. http://dx.doi.org/10.3390/electronics12204360.
Pełny tekst źródłaSansón, L. Zavala. "Simple Models of Coastal-Trapped Waves Based on the Shape of the Bottom Topography". Journal of Physical Oceanography 42, nr 3 (1.03.2012): 420–29. http://dx.doi.org/10.1175/jpo-d-11-053.1.
Pełny tekst źródłaProtsenko, S. V. "Modelling Turbulent Flows near Coastal Structures Using Various Turbulence Models". Computational Mathematics and Information Technologies 8, nr 1 (2.04.2024): 55–62. http://dx.doi.org/10.23947/2587-8999-2024-8-1-55-62.
Pełny tekst źródłaFrüh, W. G. "Low-order models of wave interactions in the transition to baroclinic chaos". Nonlinear Processes in Geophysics 3, nr 3 (30.09.1996): 150–65. http://dx.doi.org/10.5194/npg-3-150-1996.
Pełny tekst źródłaChen, Qin, Ling Zhu, Fengyan Shi i Steve Brandt. "BOUSSINESQ MODELING OF COMBINED STORM SURGE AND WAVES OVER WETLANDS FORCED BY WIND". Coastal Engineering Proceedings, nr 36v (28.12.2020): 6. http://dx.doi.org/10.9753/icce.v36v.waves.6.
Pełny tekst źródłaRhee, Shin Hyung, i Fred Stern. "RANS Model for Spilling Breaking Waves". Journal of Fluids Engineering 124, nr 2 (28.05.2002): 424–32. http://dx.doi.org/10.1115/1.1467078.
Pełny tekst źródłaNose, Takehiko, Takuji Waseda, Tsubasa Kodaira i Jun Inoue. "Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones". Cryosphere 14, nr 6 (24.06.2020): 2029–52. http://dx.doi.org/10.5194/tc-14-2029-2020.
Pełny tekst źródłaGuinot, Vincent, Sandra Soares-Frazão i Carole Delenne. "Experimental validation of transient source term in porosity-based shallow water models". E3S Web of Conferences 40 (2018): 06033. http://dx.doi.org/10.1051/e3sconf/20184006033.
Pełny tekst źródła