Artykuły w czasopismach na temat „Water spliting devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Water spliting devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Caron, Simon, Marc Röger i Michael Wullenkord. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices". Energies 13, nr 19 (5.10.2020): 5196. http://dx.doi.org/10.3390/en13195196.
Pełny tekst źródłaAbdi, Fatwa. "(Invited) Engineering Challenges in Scaling-up Solar Water Splitting Devices". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1597. http://dx.doi.org/10.1149/ma2022-01361597mtgabs.
Pełny tekst źródłaHaussener, Sophia, Mahendra Patel i Etienne Boutin. "(Invited, Digital Presentation) Photo-Electrochemical Water and CO2 Reduction Devices Operating Under Concentrated Radiation". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1598. http://dx.doi.org/10.1149/ma2022-01361598mtgabs.
Pełny tekst źródłaKim, Kiwon, i Jun Hyuk Moon. "Bismuth Vanadate/Zinc Oxide Heterojunction Electrodes for High Solar Water-Splitting Efficiency at Low Bias Potential". ECS Meeting Abstracts MA2018-01, nr 31 (13.04.2018): 1894. http://dx.doi.org/10.1149/ma2018-01/31/1894.
Pełny tekst źródłaCho, Hyun-Seok, Tatsuya Kodama, Nobuyuki Gokon, Selvan Bellan i Jong-Kyu Kim. "Development of Synthesis and Fabrication Process for Mn-CeO2 Foam via Two-Step Water-Splitting Cycle Hydrogen Production". Energies 14, nr 21 (21.10.2021): 6919. http://dx.doi.org/10.3390/en14216919.
Pełny tekst źródłaAlfaifi, Bandar Y., Habib Ullah, Sulaiman Alfaifi, Asif A. Tahir i Tapas K. Mallick. "Photoelectrochemical solar water splitting: From basic principles to advanced devices". Veruscript Functional Nanomaterials 2 (12.02.2018): BDJOC3. http://dx.doi.org/10.22261/fnan.bdjoc3.
Pełny tekst źródłaZhang, Chunyang, Sanket Bhoyate, Chen Zhao, Pawan Kahol, Nikolaos Kostoglou, Christian Mitterer, Steven Hinder i in. "Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications". Catalysts 9, nr 2 (13.02.2019): 176. http://dx.doi.org/10.3390/catal9020176.
Pełny tekst źródłaCheng, Jinshui, Linxiao Wu i Jingshan Luo. "Cuprous oxide photocathodes for solar water splitting". Chemical Physics Reviews 3, nr 3 (wrzesień 2022): 031306. http://dx.doi.org/10.1063/5.0095088.
Pełny tekst źródłaZhang, Xinyi, Michael Schwarze, Reinhard Schomäcker, Roel van De Krol i Fatwa Abdi. "Net Energy Balance Assessment for a Coupled Photoelectrochemical Water Splitting Device". ECS Meeting Abstracts MA2022-01, nr 39 (7.07.2022): 1792. http://dx.doi.org/10.1149/ma2022-01391792mtgabs.
Pełny tekst źródłaYao, Liang, Aiman Rahmanudin, Néstor Guijarro i Kevin Sivula. "Organic Semiconductor Based Devices for Solar Water Splitting". Advanced Energy Materials 8, nr 32 (4.10.2018): 1802585. http://dx.doi.org/10.1002/aenm.201802585.
Pełny tekst źródłaYamada, Taro, i Kazunari Domen. "Development of Sunlight Driven Water Splitting Devices towards Future Artificial Photosynthetic Industry". ChemEngineering 2, nr 3 (13.08.2018): 36. http://dx.doi.org/10.3390/chemengineering2030036.
Pełny tekst źródłaIbn Shamsah, Sami M. "Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions". Catalysts 11, nr 4 (27.03.2021): 429. http://dx.doi.org/10.3390/catal11040429.
Pełny tekst źródłaJiang, Chaoran, Savio J. A. Moniz, Aiqin Wang, Tao Zhang i Junwang Tang. "Photoelectrochemical devices for solar water splitting – materials and challenges". Chemical Society Reviews 46, nr 15 (2017): 4645–60. http://dx.doi.org/10.1039/c6cs00306k.
Pełny tekst źródłaCrovetto, Andrea, Korina Kuhar, Peter C. K. Vesborg, Ole Hansen, Monish Pandey, Karsten Jacobsen, Kristian Thygesen, Ib Chorkendorff i Brian Seger. "Large Band Gap Photoabsorbers for Tandem Water Splitting Devices". ECS Meeting Abstracts MA2018-01, nr 31 (13.04.2018): 1912. http://dx.doi.org/10.1149/ma2018-01/31/1912.
Pełny tekst źródłaShi, Yuanyuan, Carolina Gimbert-Suriñach, Tingting Han, Serena Berardi, Mario Lanza i Antoni Llobet. "CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices". ACS Applied Materials & Interfaces 8, nr 1 (24.12.2015): 696–702. http://dx.doi.org/10.1021/acsami.5b09816.
Pełny tekst źródłaHussain, Sajjad, Dhanasekaran Vikraman, Ghazanfar Nazir, Muhammad Taqi Mehran, Faisal Shahzad, Khalid Mujasam Batoo, Hyun-Seok Kim i Jongwan Jung. "Development of Binder-Free Three-Dimensional Honeycomb-like Porous Ternary Layered Double Hydroxide-Embedded MXene Sheets for Bi-Functional Overall Water Splitting Reactions". Nanomaterials 12, nr 16 (22.08.2022): 2886. http://dx.doi.org/10.3390/nano12162886.
Pełny tekst źródłaCottre, Thorsten, Katharina Welter, Emanuel Ronge, Vladimir Smirnov, Friedhelm Finger, Christian Jooss, Bernhard Kaiser i Wolfram Jaegermann. "Integrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings". Zeitschrift für Physikalische Chemie 234, nr 6 (12.02.2020): 1155–69. http://dx.doi.org/10.1515/zpch-2019-1483.
Pełny tekst źródłaSivula, Kevin. "(Invited) Bulk Heterojunction Organic Semiconductor Photoelectrodes and Photocatalysts for Solar-Driven Water Splitting". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1571. http://dx.doi.org/10.1149/ma2022-01361571mtgabs.
Pełny tekst źródłaJeong, Sang, Jaesun Song i Sanghan Lee. "Photoelectrochemical Device Designs toward Practical Solar Water Splitting: A Review on the Recent Progress of BiVO4 and BiFeO3 Photoanodes". Applied Sciences 8, nr 8 (17.08.2018): 1388. http://dx.doi.org/10.3390/app8081388.
Pełny tekst źródłaZhang, Biaobiao, Quentin Daniel, Ming Cheng, Lizhou Fan i Licheng Sun. "Temperature dependence of electrocatalytic water oxidation: a triple device model with a photothermal collector and photovoltaic cell coupled to an electrolyzer". Faraday Discussions 198 (2017): 169–79. http://dx.doi.org/10.1039/c6fd00206d.
Pełny tekst źródłaLiu, Bofei, Zhonghua Jin, Lisha Bai, Junhui Liang, Qixing Zhang, Ning Wang, Caichi Liu, Changchun Wei, Ying Zhao i Xiaodan Zhang. "Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices". Journal of Materials Chemistry A 4, nr 37 (2016): 14204–12. http://dx.doi.org/10.1039/c6ta04789k.
Pełny tekst źródłaModestino, M. A., M. Dumortier, S. M. Hosseini Hashemi, S. Haussener, C. Moser i D. Psaltis. "Vapor-fed microfluidic hydrogen generator". Lab on a Chip 15, nr 10 (2015): 2287–96. http://dx.doi.org/10.1039/c5lc00259a.
Pełny tekst źródłaSong, Zhaonng, Chongwen Li, Lei Chen i Yanfa Yan. "(Invited) Monolithic All-Perovskite Tandem Cells for Unassisted Water Splitting". ECS Meeting Abstracts MA2022-02, nr 48 (9.10.2022): 1800. http://dx.doi.org/10.1149/ma2022-02481800mtgabs.
Pełny tekst źródłaLiu, Rui, Zhi Zheng, Joshua Spurgeon i Xiaogang Yang. "Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers". Energy Environ. Sci. 7, nr 8 (2014): 2504–17. http://dx.doi.org/10.1039/c4ee00450g.
Pełny tekst źródłaGutierrez, Ronald R., i Sophia Haussener. "Modeling of Concurrent CO2and Water Splitting by Practical Photoelectrochemical Devices". Journal of The Electrochemical Society 163, nr 10 (2016): H1008—H1018. http://dx.doi.org/10.1149/2.0661610jes.
Pełny tekst źródłaZhang, Kan, Ming Ma, Ping Li, Dong Hwan Wang i Jong Hyeok Park. "Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis". Advanced Energy Materials 6, nr 15 (10.06.2016): 1600602. http://dx.doi.org/10.1002/aenm.201600602.
Pełny tekst źródłaXiang, Chengxiang, Adam Z. Weber, Shane Ardo, Alan Berger, YiKai Chen, Robert Coridan, Katherine T. Fountaine i in. "Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices". Angewandte Chemie International Edition 55, nr 42 (6.10.2016): 12974–88. http://dx.doi.org/10.1002/anie.201510463.
Pełny tekst źródłaBollmann, Jonas, Sudhagar Pitchaimuthu i Moritz F. Kühnel. "Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies". Energies 16, nr 8 (21.04.2023): 3604. http://dx.doi.org/10.3390/en16083604.
Pełny tekst źródłaRajput, Nitul S., Yang Shao-Horn, Xin-Hao Li, Sang-Gook Kim i Mustapha Jouiad. "Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device". Physical Chemistry Chemical Physics 19, nr 26 (2017): 16989–99. http://dx.doi.org/10.1039/c7cp03212a.
Pełny tekst źródłaTiwari, Anand, Travis Novak, Xiuming Bu, Johnny Ho i Seokwoo Jeon. "Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting". Catalysts 8, nr 11 (16.11.2018): 551. http://dx.doi.org/10.3390/catal8110551.
Pełny tekst źródłaCP, Keshavananda Prabhu, Shambhulinga Aralekallu, Veeresh A. Sajjan, Manjunatha Palanna, Sharath Kumar i Lokesh Koodlur Sannegowda. "Non-precious cobalt phthalocyanine-embedded iron ore electrocatalysts for hydrogen evolution reactions". Sustainable Energy & Fuels 5, nr 5 (2021): 1448–57. http://dx.doi.org/10.1039/d0se01829e.
Pełny tekst źródłaWang, Pan, Yixin Zong, Hao Liu, Hongyu Wen, Hai-Bin Wu i Jian-Bai Xia. "Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides". Journal of Materials Chemistry C 9, nr 14 (2021): 4989–99. http://dx.doi.org/10.1039/d1tc00318f.
Pełny tekst źródłaJin, Yanshuo, Xin Yue, Hongyu Du, Kai Wang, Shangli Huang i Pei Kang Shen. "One-step growth of nitrogen-decorated iron–nickel sulfide nanosheets for the oxygen evolution reaction". Journal of Materials Chemistry A 6, nr 14 (2018): 5592–97. http://dx.doi.org/10.1039/c8ta00536b.
Pełny tekst źródłaTang, Jianfei, Tianle Liu, Sijia Miao i Yuljae Cho. "Emerging Energy Harvesting Technology for Electro/Photo-Catalytic Water Splitting Application". Catalysts 11, nr 1 (19.01.2021): 142. http://dx.doi.org/10.3390/catal11010142.
Pełny tekst źródłaChen, Yubin, Wenyu Zheng, Sebastián Murcia-López, Fei Lv, Joan Ramón Morante, Lionel Vayssieres i Clemens Burda. "Light management in photoelectrochemical water splitting – from materials to device engineering". Journal of Materials Chemistry C 9, nr 11 (2021): 3726–48. http://dx.doi.org/10.1039/d0tc06071b.
Pełny tekst źródłaYang, Wenshu, Shuaishuai Wang, Kun Zhao, Yutao Hua, Jiangxiao Qiao, Wei Luo, Longhua Li, Jinhui Hao i Weidong Shi. "Phosphorus doped nickel selenide for full device water splitting". Journal of Colloid and Interface Science 602 (listopad 2021): 115–22. http://dx.doi.org/10.1016/j.jcis.2021.06.013.
Pełny tekst źródłaLopes, Tânia, Paula Dias, Luísa Andrade i Adélio Mendes. "An innovative photoelectrochemical lab device for solar water splitting". Solar Energy Materials and Solar Cells 128 (wrzesień 2014): 399–410. http://dx.doi.org/10.1016/j.solmat.2014.05.051.
Pełny tekst źródłaWang, Degao, Jun Hu, Benjamin D. Sherman, Matthew V. Sheridan, Liang Yan, Christopher J. Dares, Yong Zhu i in. "A molecular tandem cell for efficient solar water splitting". Proceedings of the National Academy of Sciences 117, nr 24 (1.06.2020): 13256–60. http://dx.doi.org/10.1073/pnas.2001753117.
Pełny tekst źródłaGhosh, Srabanti, i Rajendra N. Basu. "Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives". Nanoscale 10, nr 24 (2018): 11241–80. http://dx.doi.org/10.1039/c8nr01032c.
Pełny tekst źródłaSteier, Ludmilla, i Sarah Holliday. "A bright outlook on organic photoelectrochemical cells for water splitting". Journal of Materials Chemistry A 6, nr 44 (2018): 21809–26. http://dx.doi.org/10.1039/c8ta07036a.
Pełny tekst źródłaJaegermann, Wolfram, Bernhard Kaiser, Friedhelm Finger, Vladimir Smirnov i Rolf Schäfer. "Design Considerations of Efficient Photo-Electrosynthetic Cells and its Realization Using Buried Junction Si Thin Film Multi Absorber Cells". Zeitschrift für Physikalische Chemie 234, nr 4 (28.04.2020): 549–604. http://dx.doi.org/10.1515/zpch-2019-1584.
Pełny tekst źródłaLudvigsen, Alexandra Craft, Zhenyun Lan i Ivano E. Castelli. "Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices". Materials 15, nr 1 (2.01.2022): 309. http://dx.doi.org/10.3390/ma15010309.
Pełny tekst źródłaZhang, Wenrui, i Mingzhao Liu. "Modulating Carrier Transport via Defect Engineering in Solar Water Splitting Devices". ACS Energy Letters 4, nr 4 (5.03.2019): 834–43. http://dx.doi.org/10.1021/acsenergylett.9b00276.
Pełny tekst źródłaMcKone, James R., Nathan S. Lewis i Harry B. Gray. "Will Solar-Driven Water-Splitting Devices See the Light of Day?" Chemistry of Materials 26, nr 1 (14.10.2013): 407–14. http://dx.doi.org/10.1021/cm4021518.
Pełny tekst źródłaGurudayal, Rohit Abraham John, Pablo P. Boix, Chenyi Yi, Chen Shi, M. C. Scott, Sjoerd A. Veldhuis i in. "Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices". ChemSusChem 10, nr 11 (12.05.2017): 2449–56. http://dx.doi.org/10.1002/cssc.201700159.
Pełny tekst źródłaNandjou, Fredy, i Sophia Haussener. "Kinetic Competition between Water‐Splitting and Photocorrosion Reactions in Photoelectrochemical Devices". ChemSusChem 12, nr 9 (marzec 2019): 1984–94. http://dx.doi.org/10.1002/cssc.201802558.
Pełny tekst źródłaTateno, Kouta, i Kazuhide Kumakura. "Crystal Growth of Wurtzite GaP Nanowires for Solar-water-splitting Devices". NTT Technical Review 17, nr 10 (październik 2019): 36–41. http://dx.doi.org/10.53829/ntr201910fa7.
Pełny tekst źródłaAndrei, Virgil, Kevin Bethke i Klaus Rademann. "Thermoelectricity in the context of renewable energy sources: joining forces instead of competing". Energy & Environmental Science 9, nr 5 (2016): 1528–32. http://dx.doi.org/10.1039/c6ee00247a.
Pełny tekst źródłaMoehl, Thomas, Wei Cui, René Wick-Joliat i S. David Tilley. "Resistance-based analysis of limiting interfaces in multilayer water splitting photocathodes by impedance spectroscopy". Sustainable Energy & Fuels 3, nr 8 (2019): 2067–75. http://dx.doi.org/10.1039/c9se00248k.
Pełny tekst źródłaKeene, Sam, Rohini Bala Chandran i Shane Ardo. "Calculations of theoretical efficiencies for electrochemically-mediated tandem solar water splitting as a function of bandgap energies and redox shuttle potential". Energy & Environmental Science 12, nr 1 (2019): 261–72. http://dx.doi.org/10.1039/c8ee01828f.
Pełny tekst źródła