Gotowa bibliografia na temat „Water spliting devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Water spliting devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Water spliting devices"
Caron, Simon, Marc Röger i Michael Wullenkord. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices". Energies 13, nr 19 (5.10.2020): 5196. http://dx.doi.org/10.3390/en13195196.
Pełny tekst źródłaAbdi, Fatwa. "(Invited) Engineering Challenges in Scaling-up Solar Water Splitting Devices". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1597. http://dx.doi.org/10.1149/ma2022-01361597mtgabs.
Pełny tekst źródłaHaussener, Sophia, Mahendra Patel i Etienne Boutin. "(Invited, Digital Presentation) Photo-Electrochemical Water and CO2 Reduction Devices Operating Under Concentrated Radiation". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1598. http://dx.doi.org/10.1149/ma2022-01361598mtgabs.
Pełny tekst źródłaKim, Kiwon, i Jun Hyuk Moon. "Bismuth Vanadate/Zinc Oxide Heterojunction Electrodes for High Solar Water-Splitting Efficiency at Low Bias Potential". ECS Meeting Abstracts MA2018-01, nr 31 (13.04.2018): 1894. http://dx.doi.org/10.1149/ma2018-01/31/1894.
Pełny tekst źródłaCho, Hyun-Seok, Tatsuya Kodama, Nobuyuki Gokon, Selvan Bellan i Jong-Kyu Kim. "Development of Synthesis and Fabrication Process for Mn-CeO2 Foam via Two-Step Water-Splitting Cycle Hydrogen Production". Energies 14, nr 21 (21.10.2021): 6919. http://dx.doi.org/10.3390/en14216919.
Pełny tekst źródłaAlfaifi, Bandar Y., Habib Ullah, Sulaiman Alfaifi, Asif A. Tahir i Tapas K. Mallick. "Photoelectrochemical solar water splitting: From basic principles to advanced devices". Veruscript Functional Nanomaterials 2 (12.02.2018): BDJOC3. http://dx.doi.org/10.22261/fnan.bdjoc3.
Pełny tekst źródłaZhang, Chunyang, Sanket Bhoyate, Chen Zhao, Pawan Kahol, Nikolaos Kostoglou, Christian Mitterer, Steven Hinder i in. "Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications". Catalysts 9, nr 2 (13.02.2019): 176. http://dx.doi.org/10.3390/catal9020176.
Pełny tekst źródłaCheng, Jinshui, Linxiao Wu i Jingshan Luo. "Cuprous oxide photocathodes for solar water splitting". Chemical Physics Reviews 3, nr 3 (wrzesień 2022): 031306. http://dx.doi.org/10.1063/5.0095088.
Pełny tekst źródłaZhang, Xinyi, Michael Schwarze, Reinhard Schomäcker, Roel van De Krol i Fatwa Abdi. "Net Energy Balance Assessment for a Coupled Photoelectrochemical Water Splitting Device". ECS Meeting Abstracts MA2022-01, nr 39 (7.07.2022): 1792. http://dx.doi.org/10.1149/ma2022-01391792mtgabs.
Pełny tekst źródłaYao, Liang, Aiman Rahmanudin, Néstor Guijarro i Kevin Sivula. "Organic Semiconductor Based Devices for Solar Water Splitting". Advanced Energy Materials 8, nr 32 (4.10.2018): 1802585. http://dx.doi.org/10.1002/aenm.201802585.
Pełny tekst źródłaRozprawy doktorskie na temat "Water spliting devices"
Li, Fusheng. "Design of Water Splitting Devices via Molecular Engineering". Doctoral thesis, KTH, Organisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181107.
Pełny tekst źródłaQC 20160129
Smith, Adam. "Transition Metal Oxides for Solar Water Splitting Devices". Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/19670.
Pełny tekst źródłaBOLDRINI, CHIARA LILIANA. "Materials and devices for solar generation of electricity and fuels". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241173.
Pełny tekst źródłaThis PhD thesis has been focused on two main themes related to solar energy exploitation for solar fuels and electricity production. The first topic, that was the main focus of this work, has been extensively studied broaching several issues, aiming to a so called “artificial leaf”, a prototype where artificial photosynthesis can take place generating fuels (hydrogen) starting from water and sunlight. The development of renewable technologies is mandatory to limit exploitation of fossil fuels, but they usually generate electricity, and stocking electric energy is a difficult task. The development of a system capable of producing solar fuels using sunlight is thus demanding. Solar fuels are molecules that can be synthesised through a photo-activated process and that can be easily stocked and released when needed. Such a system is called an “artificial leaf”, since its working principles are the same of natural photosynthesis. In particular, the aim of the device that has been studied during this thesis was to carry out the water oxidation process, that means producing oxygen and protons from water and light thanks to a photosensitized photoanode. Protons are then reduced to hydrogen by a passive cathode. In parallel, an established technology has been used for the production of solar electricity, namely Dye Sensitized Solar Cells (DSSC). In particular, the attention has been focused on the electrolyte composition, substituting the commonly used electrolyte solvent, based on volatile organic compounds, with eco-friendly and innovative solvents. In fact, one part of this PhD project has been devoted to the study of DSSC containing eco-friendly solvents in the electrolyte solution, namely Deep Eutectic Solvents (DES). Traditional organic solvents used for this scope (usually nitriles mixtures) have many drawbacks, such as volatility and often toxicity. Leaks are thus a problem, because this would involve toxic vapours in the environment and a fast deterioration of the performance of the cell, that cannot work without the liquid electrolyte. DES instead are not volatile and are generally safe and cheap, showing different properties, that can be widely tuned according to the specific need. Two different DES have been studied, a hydrophilic and a hydrophobic one (respectively, a mixture of choline chloride, also known as Vitamin B4, and urea, diluted with water, and a mixture of DL-menthol and acetic acid, diluted with ethanol) with proper dyes absorbed onto TiO2. Many variables have been considered, such as different TiO2 precursors and layer thickness, different iodides (both inorganic and ionic liquids, IL), different ions concentration, presence of additives and of disaggregating agents. The efficiency of the optimized cell was 1.9% at 0.5 sun for the hydrophilic system and 2.5% at 1 sun for the hydrophobic solvent, compatible with traditional organic-solvent-based cells. Concerning the production of hydrogen from the artificial photosynthesis process, metal-free organic sensitizers with di-branched configuration, bearing different heteroaromatic donor moieties, have been used in a systematic study upon the effect of the sensitizers at the photoanode in the photoelectrochemical hydrogen production. Namely, phenothiazine, phenoxazine and carbazole based dyes have been tested in presence of a sacrificial electron donor (SED) to evaluate charge transfer phenomena and the external quantum efficiency (EQE) of the system. Moreover, the three sensitizers have been tested in presence of a common water oxidation catalyst (WOC) to preliminary evaluate the stability in photoelectrochemical water splitting and hydrogen and oxygen evolution. According to experimental data, the phenothiazine based derivative PTZ-Th has been recognized as the best performing sensitizer, considering its superior light harvesting capability and more efficient electron injection into the semiconductor, in photoelectrochemical water splitting.
Zanatta, Michele. "Design and development of a SICM/EC device for H2/O2 detection in photoelectrocatalytic water splitting process". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3427276.
Pełny tekst źródłaNel secolo scorso si è visto un incremento drammatico dell'importanza delle risorse energetiche. Il mondo industriale è stato segnato da questo cambiamento profondo, rendendo lo sfruttamento delle fonti energetiche rinnovabili una delle più grandi sfide del XXI secolo. In questo contesto, l'idrogeno si pone come il candidato più promettente per la sostituzione del petrolio greggio e negli ultimi anni si è visto un interesse crescente su questo argomento. In particolare, i ricercatori si sono concentrati su metodi sostenibili per la produzione di idrogeno: attualmente la frontiera scientifica è rappresentata dalla scissione dell'acqua mediante fotoelettrocatalisi, il metodo più promettente per la produzione di idrogeno mediante la scissione dell'acqua. In questo lavoro vengono introdotti risultati utili per l'avanzamento tecnologico nel campo della scissione fotoelettrocatalitica dell'acqua. Più specificatamente, viene descritta una nuova sonda per lo studio del catalizzatore, facilmente realizzata: in particolare, l'attenzione viene posta sul rilevamento del pH durante il processo di scissione dell'acqua al di sopra di fotoelettrocatalizzatori microstrutturati. Viene presentato lo studio, la progettazione, la fabbricazione e la caratterizzazione di questo dispositivo integrato microscopio a scansione di conduttanza ionica - elettrochimico (SICM-EC), preparato con materiale elettrodico e rivestimento isolante nuovi. Viene mostrato l'approccio al rilevamento di idrogeno attraverso misure elettrochimiche usando il dispositivo integrato come elettrodo di rilevamento. Viene descritta l'influenza che valori diversi di pH hanno sul potenziale di circuito aperto della sonda, sfruttata per l'analisi del processo di scissione dell'acqua su macro e microelettrodi. Sono stati fabbricati microelettrodi ricoperti da fotoelettrocatalizzatore Co-Pi, noto per combinare molti elementi della fotosintesi naturale con un comportamento auto-riparante. Questi microelettrodi sono stati usati per effettuare la scissione dell'acqua e vengono mostrati dati provenienti da prove sperimentali. Infine, è stato progettato un nuovo dispositivo microfluidico per combinare i vantaggi della fotoelettrocatalisi con le caratteristiche positive dei sistemi microfluidici. Inoltre, attraverso simulazioni è studiata la fluidodinamica che avviene in questo dispositivo proposto. Ulteriori prospettive includono il rilevamento simultaneo di pH e l'imaging topografico dei fotoelettrocatalizzatori, con studi approfonditi sul loro comportamento all'interno di un sistema microfluidico.
Jacobsson, T. Jesper. "Highly Efficient CIGS Based Devices for Solar Hydrogen Production and Size Dependent Properties of ZnO Quantum Dots". Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221260.
Pełny tekst źródłaHIDALGO, DIAZ DIANA CAROLINA. "Development of innovative materials used in electrochemical devices for the renewable production of hydrogen and electricity". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2588827.
Pełny tekst źródłaPoulain, Raphaël Verfasser], Ulrike [Akademischer Betreuer] [Kramm, Andreas [Akademischer Betreuer] Klein, Joris Akademischer Betreuer] Proost, Denis [Akademischer Betreuer] Flandre, Karsten [Akademischer Betreuer] [Albe, Thierry [Akademischer Betreuer] Toupance i Marian [Akademischer Betreuer] Chatenet. "Electronic and electrocatalytic properties of nickel oxide thin films and interfacing on silicon for water splitting devices / Raphaël Poulain ; Andreas Klein, Joris Proost, Ulrike Kramm, Denis Flandre, Karsten Albe, Thierry Toupance, Marian Chatenet". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/120839309X/34.
Pełny tekst źródłaPoulain, Raphaël Verfasser], Ulrike [Akademischer Betreuer] [Kramm, Andreas [Akademischer Betreuer] Klein, Joris [Akademischer Betreuer] Proost, Denis [Akademischer Betreuer] Flandre, Karsten [Akademischer Betreuer] Albe, Thierry [Akademischer Betreuer] Toupance i Marian [Akademischer Betreuer] Chatenet. "Electronic and electrocatalytic properties of nickel oxide thin films and interfacing on silicon for water splitting devices / Raphaël Poulain ; Andreas Klein, Joris Proost, Ulrike Kramm, Denis Flandre, Karsten Albe, Thierry Toupance, Marian Chatenet". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/120839309X/34.
Pełny tekst źródłaBai, Rakha. "Vertically aligned hetero-epitaxial ZnO/CdS and ZnO/PbS core /shell nanorodarrays: a platform for enhanced photoelectrochemical response of water spliting devices". Thesis, 2018. http://localhost:8080/iit/handle/2074/7753.
Pełny tekst źródłaMoreno, Garcia Julian. "Cylindrical Nanowires for Water Splitting and Spintronic Devices". Diss., 2021. http://hdl.handle.net/10754/670351.
Pełny tekst źródłaKsiążki na temat "Water spliting devices"
Capel, Paul D. Evaluation of selected information on splitting devices for water samples. Sacramento, Calif: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Znajdź pełny tekst źródłaCapel, Paul D. Precision of a splitting device for water samples. Sacramento, Calif: U.S. Geological Survey, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Water spliting devices"
Zhang, Guangye, Chen Xie, Peng You i Shunpu Li. "Organic Photocatalysts for Water Splitting". W Introduction to Organic Electronic Devices, 221–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6091-8_8.
Pełny tekst źródłaHaussener, Sophia, Yannick Gaudy i Saurabh Tembhurne. "Chapter 9. Modelling-derived Design Guidelines for Photo-electrochemical Devices". W Advances in Photoelectrochemical Water Splitting, 239–65. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781782629863-00239.
Pełny tekst źródłaGong, Jian Ru. "Graphene-Based Solar-Driven Water-Splitting Devices". W Graphene-based Energy Devices, 215–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch7.
Pełny tekst źródłaLi, Guoqiang, i Weijia Zhou. "Carbon-based Electrocatalysts for Water-splitting". W Flexible Energy Conversion and Storage Devices, 459–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342631.ch15.
Pełny tekst źródłaSingh, Meenesh R., Sophia Haussener i Adam Z. Weber. "Chapter 13. Continuum-scale Modeling of Solar Water-splitting Devices". W Energy and Environment Series, 500–536. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010313-00500.
Pełny tekst źródłaSharma, Shailja, Babita Kumari, Nirupama Singh, Anuradha Verma, Vibha R. Satsangi, Sahab Dass i Rohit Shrivastav. "Synthesis and Characterization of CuO-TiO2 Core Shell Nanocomposites for Hydrogen Generation Via Photoelectrochemical Splitting of Water". W Physics of Semiconductor Devices, 729–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_188.
Pełny tekst źródłaDuan, Lele, Lianpeng Tong i Licheng Sun. "Towards the Visible Light-Driven Water Splitting Device: Ruthenium Water Oxidation Catalysts with Carboxylate-Containing Ligands". W Molecular Water Oxidation Catalysis, 51–76. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118698648.ch4.
Pełny tekst źródłaJansi Rani, B., A. Anusiya, G. Ravi i R. Yuvakkumar. "Free-Standing Bi-Induced ZrO2 Nanoflake Array Photoanodes Fabrication for Photoelectrochemical (PEC) Water Splitting Applications". W Recent Research Trends in Energy Storage Devices, 65–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_8.
Pełny tekst źródłaTiwari, Udit, i Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water". W Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.
Pełny tekst źródłaBosserez, Tom, Jan Rongé, Lisa Geerts, Christos Trompoukis i Johan A. Martens. "Integrated Solar Hydrogen Devices: Cell Design and Nanostructured Components in Liquid and Vapor-Phase Water Splitting". W Nanotechnology in Catalysis, 907–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699827.ch34.
Pełny tekst źródłaStreszczenia konferencji na temat "Water spliting devices"
Gokon, Nobuyuki, Tatsuya Kodama, Ayumi Nagasaki, Ko-ichi Sakai i Tsuyoshi Hatamachi. "Ferrite-Loaded Ceramic Foam Devices Prepared by Spin-Coating Method for a Solar Two-Step Thermochemical Cycle". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90172.
Pełny tekst źródłaAhsan, Syed Saad, i David Erickson. "Microfluidic Photocatalytic Water-Splitting Reactors". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87860.
Pełny tekst źródłaZhang, Xinzheng, Nickolai V. Kukhtarev, Tatiana Kukhtareva, Anatoliy Glushchenko, Jiayi Wang i Yuriy Garrbovskiy. "Photogalvanic effect for water splitting by pulsed electrolysis enhanced by magnetic fields". W Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XII, redaktorzy Shizhuo Yin i Ruyan Guo. SPIE, 2018. http://dx.doi.org/10.1117/12.2320702.
Pełny tekst źródłaZutter, Brian, Zejie Chen, Luisa Barrera, Aliya Lapp, Akihiko Kudo, Dan V. Esposito, Rohini Bala Chandran, Shane Ardo i A. Alec T. Talin. "Charge transport in single particle SrTiO3 photocatalysts for water splitting". W Low-Dimensional Materials and Devices 2022, redaktorzy Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov i M. Saif Islam. SPIE, 2022. http://dx.doi.org/10.1117/12.2636984.
Pełny tekst źródłaKodama, Tatsuya, Tomoki Hasegawa, Ayumi Nagasaki i Nobuyuki Gokon. "Reactive Fe-YSZ Coated Foam Devices for Solar Two-Step Water Splitting". W ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36060.
Pełny tekst źródłaOhmi, K., K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki i T. Yonehara. "Water Jet Splitting of Thin Porous Si for ELTRAN". W 1999 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1999. http://dx.doi.org/10.7567/ssdm.1999.b-10-2.
Pełny tekst źródłaLiu, R. S. "Quantum Dots Sensitized ZnO Nanowires-array Photoelectrodes for Water Splitting". W 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.p-5-1.
Pełny tekst źródłaMikolasek, M., F. Chymo, K. Frohlich, K. Husekova, P. Ondrejka, J. Racko, I. Hotovy, J. Breza i L. Harmatha. "MIS Structures with Ruo2 Schottky Contact for Photoelectrochemical Water Splitting". W 2018 12th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM). IEEE, 2018. http://dx.doi.org/10.1109/asdam.2018.8544591.
Pełny tekst źródłaHannappel, Thomas, Ohlmann Jens, Agnieszka Paszuk, Hans-Joachim Lewerenz, Matthias M. May, Lara Eggert, Supplie Oliver i in. "Epitaxial Si-based Tandem Device Structures for Efficient Solar Water Splitting". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.280.
Pełny tekst źródłaHannappel, Thomas, Ohlmann Jens, Agnieszka Paszuk, Hans-Joachim Lewerenz, Matthias M. May, Lara Eggert, Supplie Oliver i in. "Epitaxial Si-based Tandem Device Structures for Efficient Solar Water Splitting". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.280.
Pełny tekst źródłaRaporty organizacyjne na temat "Water spliting devices"
Garfunkel, Eric, i Charles Dismukes. Platinum group metal-free (PGM-free) integrated tandem junction photoelectrochemical (PEC) water splitting devices - Final Technical Report. Office of Scientific and Technical Information (OSTI), kwiecień 2023. http://dx.doi.org/10.2172/1971134.
Pełny tekst źródłaEvaluation of selected information on splitting devices for water samples. US Geological Survey, 1996. http://dx.doi.org/10.3133/wri954141.
Pełny tekst źródła