Rozprawy doktorskie na temat „Water – Purification – Iron removal”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Water – Purification – Iron removal.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Water – Purification – Iron removal”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Isaeva, Margarita, i Castro Natasha Montes. "Water Treatment for the Removal of Iron and Manganese". Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5357.

Pełny tekst źródła
Streszczenie:
The purpose of the study is to find a suitable method for removal of iron and manganese considering local economic and environmental aspects. El Salvador is situated in Central America with a coast line towards the Pacific Ocean. The country borders Guatemala and Honduras. Aguilares is a town situated in the department of San Salvador, with a population of approximately 33,000 people. Currently, the population is provided with water for about two hours per day, since it is the highest capacity of the existing wells. During these two hours many households fill a small tank with water to use for the remainder of the day. The water is not safe to use for oral consumption because of the levels of bacteria and other contamination. One of the wells, situated in the community of Florída is not in use at this date because of the high levels of Iron and Manganese in the ground water which cannot be removed with the present technique.Ground water is naturally pure from bacteria at a depth of 30 m or more, however solved metals may occur and if the levels are too high the water is unsuitable to drink. The recommended maximum levels by WHO (2008) [1] for Iron and Manganese are 2 mg/l and 0.5 mg/l respectively.Literature and field studies led to the following results; Iron and manganese can be removed by precipitation followed by separation. Precipitation is achieved by aeration, oxygenation or chemical oxidation and separation is achieved by filtration or sedimentation.The different methods all have advantages and disadvantages. However the conclusion reached in this report is that aeration and filtration should be used in the case of Florída. What equipment and construction that should be used depends on economic and resource factors as well as water requirements, which is up to the council of Aguilares to deliberate.
Style APA, Harvard, Vancouver, ISO itp.
2

Conley, LuAnne Simpson. "Removal of complexed iron by chemical oxidation and/or alum coagulation". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03172010-020643/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Swarna, Anitha. "Removal of Arsenic Using Iron Coated Limestone". TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1342.

Pełny tekst źródła
Streszczenie:
Arsenic contamination in drinking water is a severe problem worldwide. The best way to prevent hazardous diseases from chronic arsenic exposure is to remove the exposure. Efforts to remediate arsenic in drinking water have taken two tracks. One is to provide surface or shallow well water sources as an alternative to the arsenic contaminated deep wells. Another approach is to remove arsenic from the contaminated water. Different removal technologies like oxidation, chemical coagulation, precipitation, adsorption and others are available. There are problems and benefits associated with each of these approaches that can be related to cultural, socio-economic and engineering influences. The method proposed in this research is adsorption of arsenic to iron coated limestone. Different iron coated limestone samples were prepared. Standard solutions of 100ppb arsenic were prepared and batch and kinetic experiments were conducted. The final solution concentrations were analyzed by Graphite Furnace Atomic Adsorption Spectroscopy (GFAAs) and the results showed that iron coated limestone removed arsenic below 10ppb with 5 grams of material. Variations in iron coverage impacted efficiency of arsenic removal.
Style APA, Harvard, Vancouver, ISO itp.
4

Coffey, Bradley Martin. "Removal of soluble iron and manganese from groundwater by chemical oxidation and oxide-coated multi-media filtration". Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sinsabaugh, Robert L. "Removal of dissolved organic matter from surface waters by coagulation with trivalent iron". Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/49777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Beard, Kelly Marie. "Role of oxidants in the removal of iron and organics from Harwood's Mill Reservoir". Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/104292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Shorney, Holly L. "The performance of free chlorine and chlorine dioxide oxidation and/or alum coagulation for the removal of complexed Fe(II) from drinking water". Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/44744.

Pełny tekst źródła
Streszczenie:
Past research regarding complexed iron has focused on the resistance to and kinetics of oxidation by O₂(aq) and the extent of stabilization. The 0.45 um filter was typically used to differentiate between dissolved and particulate iron. This research investigated Fe(II) oxidation by free chlorine and ClO₂ in the presence of DOC by varying the pH, DOC to Fe ratios, DOC sources, oxidant dosages, and contact time. Complexed iron removal by alum coagulation with and without oxidant addition was also examined. Particulate, colloidal, and soluble iron were differentiated by the use of 0.2 um filters and 100K ultrafilters. Ultrafiltration and oxidation studies revealed that, at the DOC-to-iron ratios used for this research, not all of the Fe(II) in solution was actually complexed. Thus, oxidation studies represented the oxidation of uncomplexed Fe(II) to Fe(III), which was then complexed by the higher molecular weight DOC. Results indicated that particulate iron formation (as defined as retention by a 0.2 um filter) was a function of the DOC source and oxidant used for testing. The formation of colloidal iron (as defined by retention on 100K ultrafilter) due to oxidation was dependent upon the initial DOC-to-iron ratio and the DOC source. A correlation between DOC adsorption to iron oxide solids and the solution pH, initial DOC-to-iron ratio, and the oxidant used was also evident. Complexed Fe(II) was removed from solution by alum coagulation. Oxidant addition to alum coagulation was necessary to effectively remove uncomplexed Fe(II) (in the presence of DOC) from solution.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
8

Leake, Thomas Russell. "Zinc removal using biogenic iron oxides". Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Fall2009/T_Leake_120409.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.S. in enviromental engineering)--Washington State University, December 2009.
Title from PDF title page (viewed on Jan. 28, 2010). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 27-31).
Style APA, Harvard, Vancouver, ISO itp.
9

Burner, Joe Gary. "Manganese removal from an organic-laden surface water". Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/104297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cordray, Antoine. "Phosphorus removal characteristics on biogenic ferrous iron oxides". Pullman, Wash. : Washington State University, 2008. http://www.dissertations.wsu.edu/Thesis/Fall2008/a_cordray_111708.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.S. in environmental engineering)--Washington State University, December 2008.
Title from PDF title page (viewed on Dec. 23, 2008). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 69-72).
Style APA, Harvard, Vancouver, ISO itp.
11

Xie, Li. "Factors and mechanisms controlling bromate removal by zerovalent iron /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20XIE.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Wong, Kit Iong. "Chemical removal of dichloromethane (DCM) from contaminated water using advanced oxidation processes (AOPs) :Hydrogen Peroxide Ozone UV". Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3868740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Simm, Robert. "Enhanced biological phosphorus removal using a sequencing batch RBC". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28517.

Pełny tekst źródła
Streszczenie:
The objective of the research program was to demonstrate the technical feasibility of removing phosphorus, by the enhanced biological phosphorus removal mechanism, from domestic wastewater using a laboratory scale Sequencing Batch Rotating Biological Contactor (SBRBC). The rotating discs of the RBC were subjected to alternating anaerobic/aerobic conditions by varying the water level in the reaction vessel. At the start of the treatment cycle, the RBC reactor would be filled submerging the rotating discs and ensuring anaerobic conditions in the RBC biofilm. Acetate would be added to the reaction vessel at this time. Following the batch anaerobic react period part of the reactor contents were decanted to either the sewage feed tank or a separate holding vessel to later become part of the influent for the next treatment cycle. With the rotating: discs of the-RBC partially submerged oxygen was available to the bacteria, in the RBC biofilm. Three operating schedules were tried with the above process. Each operating schedule differed in the way the decanted wastewater from the anaerobic phase was handled. Batch tests were conducted weekly to determine the nature of the biological reactions taking place in each of the batch anaerobic and aerobic phases. The SBRBC process showed promise for enhanced biological phosphorus removal from domestic wastewater. Carbon removal and nitrification of the wastewater were secondary benefits to this process. The success of the process was found to be dependent on the attainment of proper anaerobic conditions at the start of each treatment cycle.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
14

Himmelstutzer, EA. "The removal of impurities from a process stream". Thesis, Cape Technikon, 2002. http://hdl.handle.net/20.500.11838/2159.

Pełny tekst źródła
Streszczenie:
Thesis (MTech (Chemical Engineering))--Cape Technikon, 2002.
The high purity 1-octene produced by Sasol Alpha Olefins in Secunda and which is sold to DOW Chemical Company for co-monomer application, has performed poorly over the DOW Ziegler-Natta catalysts. The reason for the poor performance was catalyst poisoning caused by low-level impurities present in the 1-octene. Much work from Sasol and DOW has gone into identifying the components responsible for catalyst deactivation, as well as methods suitable for removing them without significant 1-octene losses. Super NMP (n-Methyl-2-Pyrrolidone) extractive distillation piloting was performed previously on 1-octene in order to remove the low-level impurities that deactivate the DOW catalysts. VLE (vapour liquid equilibrium) test work performed previously indicated that all xylenol isomers are more promising as extractive distillation solvents than NMP.
Style APA, Harvard, Vancouver, ISO itp.
15

Zhao, Kang, i 趙鈧. "An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196027.

Pełny tekst źródła
Streszczenie:
Phosphorus (P) is an important pollutant of concern in wastewater that causes eutrophication and algal blooms in water body. On the other hand, P is a valuable natural resource for agricultural and industrial use. With the rapid depletion of mineral phosphorus on earth, there is a need to recover phosphorus from wastewater. In this study, a new chemical and biological process facilitated with iron dosing has been developed for P removal and recovery during wastewater treatment. The system consists of a main stream identical to the conventional activated sludge process in an aerobic sequencing batch reactor (SBR) for P removal and a side stream of sludge recirculation through an anaerobic SBR (AnSBR) for P release and recovery from the P-rich sludge. In the aerobic SBR treating a synthetic domestic wastewater, Fe(III) (FeCl3) was dosed to remove P by precipitation and adsorption. Fe(III) dosing at a Fe/P molar ratio of 1.5:1 could reduce the P concentration from more than 10 mg/L to below 1 mg/L in the final effluent. Compared to other dosing periods, dosing Fe(III) right before the SBR settling could achieve the best result in sludge flocculation and P removal. Meanwhile, organic removal was well maintained as 90% of the chemical oxygen demand (COD) was degraded in the aerobic SBR. In the AnSBR, phosphate precipitated with ferric iron in the sludge was released owing to microbial Fe(III) reduction, and a positive correlation was found between the phosphate and ferrous iron concentrations in the sludge suspension. Chemical tests showed that significant P release from Fe(III)-P occurred only if the acidic condition and the reducing condition were combined. For the AnSBR sludge, a higher organic loading, lower pH and higher biomass concentration resulted in a higher level of Fe(III) reduction and P release. Organic acidogenesis prevailed in the reactor and lowered the pH to ~4.5, which facilitated the P release from the solid phase into the liquid phase. With a solids retention time (SRT) of 10 days, the anaerobic supernatant contained a phosphate concentration of up to 70 mg/L, while the settled sludge was returned to the aerobic SBR. The phosphate could be readily recovered from the supernatant with Fe-induced precipitation by aeration and pH adjustment, and the overall P recovery could be achieved at about 70%. In addition to the treatment performance, the speciation of P in the aerobic sludge and the anaerobic sludge also was investigated. A significant change in the immediately available P and the redox-sensitive P was found in the sludge through the aerobic-anaerobic cycle. Such chemical transformation is believed to be crucial to the P removal and recovery during the wastewater treatment process.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
Style APA, Harvard, Vancouver, ISO itp.
16

Falconer, Haley Ryanne Watson. "Column filter studies phosphorus removal using biogenic iron oxides /". Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Fall2009/H_Falconer_100709.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.S. in environmental engineering)--Washington State University, December 2009.
Title from PDF title page (viewed on Jan. 12, 2010). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 52-53).
Style APA, Harvard, Vancouver, ISO itp.
17

Zhang, Liping. "Removal and inactivation of waterborne viruses using zerovalent iron". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 87 p, 2008. http://proquest.umi.com/pqdweb?did=1601514831&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of Delaware, 2008.
Principal faculty advisors: Yan Jin, Dept. of Plant & Soil Sciences; and Pei C. Chiu, Dept. of Civil & Environmental Engineering. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
18

Jeffcoat, Stuart Blakely. "The importance of hydrophobicity/hydrophilicity on particle removal in deep bed filtration and macroscopic filtration modeling". Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/20149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Rose, Joan Bray. "Virus removal during conventional drinking water treatment". Diss., The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_473_sip1_w.pdf&type=application/pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Vaughan, Ronald L. "Modeling AS(V) removal in iron oxide impregnated activated carbon columns". free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ogutverici, Abdullah. "Triclosan Removal By Nanofiltration From Surface Water". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615617/index.pdf.

Pełny tekst źródła
Streszczenie:
Nowadays, organic pollutants occurring in surface waters have raised substantial concern in public. Triclosan (TCS) is one of the antimicrobial agents which are utilized in both domestic and industrial application. In this study nanofiltration (NF) of TCS in surface water was investigated. Laboratory scale cross-flow device is operated in total recycle mode and DK-NF and DL-NF membranes were used. Kesikkö
prü
Reservoir (Ankara) water was used as raw water. Effect of natural organic matter (NOM) content of raw water on TCS removal is searched through addition of humic acid (HA) into the raw water as to represent for NOM. Steady state permeate fluxes are monitored throughout the experiments to explore the flux behavior of the membranes. During the experiments, performance of the membranes is assessed by monitoring TCS, as well as other water quality parameters, such as UVA254 and total organic carbon (TOC) in the feed and permeates waters. Results obtained put forward that TCS removal by NF membrane is not as same as reported in the literature. In the literature, membrane removal efficiency is reported as above 90%. However, this study proved that this would be true if and only if one does not considers the adsorption of TCS by the system itself, in the absence of membrane. It is now clear that, because of adsorption of the TCS onto the experimental set up (feed tank, pipings etc.)
the real TCS removal efficiency of the nanofiltration is around 60-70%.
Style APA, Harvard, Vancouver, ISO itp.
22

Gu, Zhimang. "Development and evaluation of innovative iron-containing porous carbon adsorbents for arsenic removal". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/5864.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 10, 2007) Vita. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
23

Rubidge, Gletwyn Robert. "Evaluation and optimization of selected methods of arsenic removal from industrial effluent". Thesis, Port Elizabeth Technikon, 2004. http://hdl.handle.net/10948/230.

Pełny tekst źródła
Streszczenie:
This research was directed at reducing arsenic levels in the effluents generated at the Canelands facility that manufactures monosodium methyl arsenate. Two effluent streams containing arsenic have to be considered, a raw water stream that is treated on site and a brine stream that is disposed of by sea outfall. Removal of arsenate from aqueous media by coagulation was investigated and models were developed describing selected variables that influence the removal of the arsenate. Three coagulant systems were investigated, namely aluminium(III) coagulation, iron(III) coagulation and binary mixtures of aluminium(III) and iron(III). Researchers have studied individual aluminium (III) sulphate and iron(III) chloride coagulation. No detailed research and modelling had, however, been carried out on the use of binary mixtures of aluminium (III) sulphate and iron (III) chloride coagulation of aqueous arsenate, nor had individual aluminium(III) sulphate and iron(III) chloride coagulation of arsenate been modelled at relatively high arsenate concentrations. The models that were generated were validated statistically and experimentally. The variables investigated in the aluminium(III) model included initial arsenate concentration, pH, polymeric flocculent concentration, aluminium(III) concentration and settling time. The variables modelled in the iron(III) coagulation were initial arsenate concentration, pH, polymeric flocculent concentration, and iron(III) to arsenic mole ratio. The modelling of the binary coagulant system included initial arsenate concentration, pH, iron (III) concentration, aluminium(III) concentration, and flocculent concentration as variables. The most efficient arsenic removal by coagulation was iron(III), followed by the binary mixture of aluminium(III) and iron(III) and the weakest coagulant was aluminium(III) sulphate. Scale-up coagulations performed on real raw water samples at a 50 litre volume showed that iron(III) was the most efficient coagulant (on a molar basis) followed closely by the binary mixture, while aluminium(III) coagulation was considerably weaker. The residual arsenic levels of the iron(III) and the binary coagulation systems met the effluent discharge criteria, but the aluminium coagulation system did not. Leaching tests showed that the iron(III) sludge was the most stable followed by the sludge of the binary mixture and the aluminium(III)-based sludge leached arsenic most readily. Settling rate studies showed that the flocs of the iron(III) coagulations settled the fastest, followed by binary mixture flocs and the aluminium flocs settled the slowest. The flocs of the binary mixture had the lowest volume, followed by the iron(III) flocs, while the aluminium(III) flocs were the most voluminous. Based on current operations of the raw water treatment plant the aluminium(III)-based coagulation is the most cost efficient. Given a relative costing of 1.00 for the aluminium(III) coagulation, the iron(III) chloride-based coagulation would be 2.67 times more expensive and the equimolar binary mixed aluminium(III)/iron(III) system would be 1.84 times the cost of aluminium(III) coagulation.
Style APA, Harvard, Vancouver, ISO itp.
24

Cronje, Martin. "Investigation of electrochemical combustion plant for rural water disinfection and industrial organic effluent removal". Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16292.

Pełny tekst źródła
Streszczenie:
Thesis (MScIng)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: Recent years have seen the development of various treatment methods for the purification of industrial waste waters due to the increased demand for reduced pollutant effluents. Aqueous waste streams containing toxic organic compounds are of special interest, since conventional treatment methods such as biological waste treatment can not always be used. Other popular treatment methods are often ineffective. Catalytic oxidation of organic wastes has been investigated since the 1960s with varying degrees of success. A major problem associated with this method is the high temperatures and pressures required to improve the activation energies involved. Electrochemical oxidation has become a popular method in the literature of treating these wastes, since the applied voltage determines the activation energy, and therefore the process can often be performed at ambient conditions. This thesis investigates the capability of a unique reactor system in the treatment of these wastes. The reactor utilises proton-exchange membrane technology to eliminate the requirement of conductivity in treated waste streams; thus the membrane serves as a solid electrolyte. The reactor system has therefore been referred to as a solid-polymer-electrolyte reactor. Novel metal oxide anodes are responsible for the oxidation of the organic molecules. These metal oxide catalysts show promise in the treatment of a wide variety of organic wastes. A SnO2 catalyst doped with ZrO2 is used as anode in this study. Dopants are added to the catalyst to improve properties such as catalytic activity and conductivity. Kinetic data was obtained on a wide range of values for the chosen experimental parameters (current density and flow rate). Phenol, an organic molecule often referred to in the literature as model contaminant due to its resistance to oxidation,was also used as contaminant in this study. The use of the reactor system in the disinfection of water containing selected pathogens, were included in the experimental work. This kinetic data served in the development of a simple model of the process, and provided the basis for a full analysis regarding potential scale-up and economic feasibility. A requirement of the study was the accurate determination of the various oxidation breakdown products of phenol. This led to the refinement of an HPLC analytical method in order to quantitatively determine these products. The full analysis showed that the current reactor system would not be economically viable — mainly due to very long reactor lengths required for the complete removal of all organic material. Both mass transfer and charge transfer at the chosen experimental conditions influenced the electrochemical oxidation of phenol. High pressure drops, causing low flow rates in the reactor, accounted for this because of the narrow flow channels required in the reactor. Some catalyst deactivation was also suspected to affect the overall reaction, but the full extent of the deactivation was not investigated thoroughly. There is still room for improvement in the electrochemical oxidation of organic wastes. The design of the flow channels, a factor that was not investigated, can significantly improve efficiency. Another aspect that was not investigated was the catalyst type. The catalyst has been identified in the literature as the main contributing factor to the success of the oxidation reaction. A wide variety of metal oxide catalysts are currently being researched and may improve the kinetics of the process even further. Further improvement needs to be made on the membrane/electrode assembly to improve current density distribution. Every improvement of the process in terms of the reactor design and catalyst will impact on the economics of the process, thus making the process more competitive with current treatment technologies.
AFRIKAANSE OPSOMMING: In die afgelope paar dekades, is daar ’n wye verskeidenheid metodes ontwikkel wat gebruik kan word om industri¨ele afvoer strome te behandel. Hierdie ontwikkeling het plaasgevind as gevolg van die verhoogde eis aan skoner afvoerstrome. Wateragtige afvoerstrome wat organiese verbindings bevat, is van besonderse belang omdat hierdie tipe strome soms besonders moeilik kan wees om te behandel. Gebruiklike metodes is in die meeste gevalle ongeskik vir behandelings-doeleindes. Katalitiese oksidasie is sedert die 1960’s gebruik, maar hierdie prosesse benodig dikwels ho¨e drukke en temperature om suksesvol te wees. Elektrochemiese oksidasie het intussen ’n populˆere behandelingsmetode geword, aangesien die aktiveringsenergie vir die oksidasieproses hoofsaaklik afhanklik is van die aangewende potensiaal en dus kan die proses by atmosferiese toestande gebruik word. In hierdie tesis word die geskiktheid van ’n unieke reaktorstelsel vir water-suiwering ondersoek. Die reaktor gebruik ’n proton-uitruilings-membraan om die behoefte vir konduktiwiteit in die water uit te skakel. Die membraan dien dus as ’n tipe soliede elektroliet en as gevolg hiervan word na die reaktorstelsel verwys as ’n soliede-polimeer-elektroliet reaktor. Nuwe metaal-oksied anodes word in die reaktor gebruik aangesien hulle belowende resultate toon in die oksidasie van organiese verbindings. In die navorsing, is ’n SnO2 katalis wat klein hoeveelhede ZrO2 bevat gebruik. Oksiede soos ZrO2 word dikwels gebruik om die aktiwiteit en konduktiwiteit van hierdie kataliste te bevorder. Kinetiese data is oor ’n wye bereik van parameter waardes ingesamel. Die hoof parameters in die eksperimentele werk was stroom digtheid en vloeitempo. Fenol, ‘n komponent wat volgens die literatuur in hierdie tipe van werk gebruik word, isas die besoedelende komponent gekies. Die doeltreffendheid van die reaktor in die ontsmetting van water, wat met ’n verskeidenheid skadelike mikro-organismes besmet is, is ook getoets. ‘n Eenvoudinge model is opgestel m.b.v. die kinetiese data, waarna ’n volledige analise met betrekking tot grootskaalse bedryf en ekonomiese uitvoerbaarheid gedoen is. ‘n Vereiste van die studie was om die konsentrasie van die afbreek-produkte van die oksidasie akkuraat vas te stel. As gevolg hiervan is ‘n ho¨e-druk-vloeistofchromatografie analitiese metode verfyn. Die analise het getoon dat die reaktorstelsel nie ekonomies sou wees nie. Een van die hoofredes hiervoor is die onrealistiese reaktorlengtes wat benodig sou word. Resultate het getoon dat die reaksie deur beide massa-oordrag en lading-oordrag be¨ınvloed word. Ho¨e drukvalle in die reaktor wat gelei het tot lae vloeitempo’s was hiervoor verantwoordelik. Die deaktivering van die katalis be¨ınvloed waarskynlik die reaksie, maar die deaktiveringsverskynsel is nie ten volle ondersoek nie. Die reaktorstelsel kan verder verbeter word deur verskeie elemente van die reaktor te ondersoek. Die ontwerp van die vloeikanale in die reaktor is nie ondersoek nie en kan die werksverrigting van die reaktor verhoog. Uit die literatuur is gevind dat die tipe metaaloksied wat as katalis gebruik word, die reaksie direk be¨ınvloed. Dus kan navorsing wat tans op die kataliste gedoen word nuwe kataliste na vore bring wat meer doeltreffend sal wees. Laastens, is die huidige membraan/elektrode samestelling nog oneffektief en kan die reaktor-opstelling dus nog verbeter word. Elke verbetering wat op die bogenoemde faktore van die reaktor ontwerp verkry word, sal die ekomoniese uitvoerbaarheid van die proses be¨ınvloed. So, sal die proses al meer kompeterend met huidige behandelingsmetodes word.
Style APA, Harvard, Vancouver, ISO itp.
25

Amburgey, James E. "Improving filtration for removal of cryptosporidium oocysts and particles from drinking water". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/20723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Seyfried, Alexander G. H. "Influence of nutrients on the biological phosphorus removal process at high acetate concentrations". Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/42095.

Pełny tekst źródła
Streszczenie:
The objective of this study was to examine the influence of nutrients on the biological phosphorus removal process at high acetate concentrations. It was an extension of studies conducted by Randall and Chapin (1994), who found that industrial wastewater with high concentrations of acetate were able to inhibit the biological phosphorus removal process. Two bench-scale pilot plants were operated under controlled conditions that included synthetic wastewater as feed. The acetic acid concentrations in the feed of one system was increased in steps from 200 to 800 mg/L while the acetic acid concentrations in the feed of the other system was constantly held at 200 mg/L. Sludge from both systems was used for batch tests determining the kinetics of phosphorus release and uptake and poly-β-hydroxybutyric acid synthesis. Furthermore, the influence of various nutrients were examined during these batch tests. The results of this study confirmed the observations of Randall and Chapin (1994). High concentrations (600 mg/L) of acetic acid did inhibit the biological phosphorus removal process; however, this inhibition could be countered by adding calcium into the feed. The reactions of phosphorus release and uptake are described by first order kinetics.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
27

Gui, Minghui. "IRON AND IRON OXIDE FUNCTIONALIZED MEMBRANES WITH APPLICATIONS TO SELECTED CHLORO-ORGANIC AND METAL REMOVAL FROM WATER". UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/37.

Pełny tekst źródła
Streszczenie:
The development of functionalized membranes with tunable pores and catalytic properties provides us an opportunity to manipulate the membrane pore structure, selectivity and reactivity. By introducing the functional groups into membrane pores, dissolved metal ions and reactive particles can be effectively immobilized within the polymer matrix for toxic chloro-organic and heavy metal remediation in water. A polyelectrolyte functionalized membrane platform with tunable pore size and ion exchange capacity has been developed for iron/iron oxide nano-catalyst synthesis and chlorinated organic compound (trichloroethylene, TCE and polychlorinated biphenyls, PCBs) degradation. Highly robust polyvinylidene fluoride (PVDF) microfiltration membranes are used as the support with cross-linked polyacrylic acid (PAA) filled in the pores. By varying the environmental pH, PAA hydrogels have either swelling or collapsing behavior, resulting in different effective membrane pore sizes for different separation purposes. Cation exchange groups (i.e. carboxyl groups) in PAA chains prevent the aggregation and leaching of nanoparticles (NPs) during in-situ synthesis and reaction. Depending on the catalyst loading and residence time, TCE and PCBs can be completely degraded by reduction of zero-valent iron and bimetallic iron/palladium NPs, or iron oxide catalyzed free radical oxidation at near-neutral pH. Biphenyl from PCB dechlorination can be further oxidized by hydroxyl radicals (OH•) generated from hydrogen peroxide (H2O2) decomposition. Hydroxybiphenyls and benzoic acid are identified as oxidation products. Line scan and elemental mapping in transmission electron microscopy (TEM) and X-ray photo electron spectroscopy (XPS) characterizations are conducted to understand the effect of iron surface transformation on NP reactivity, and to optimize the membrane functionalization. The same platform can also be used to remove toxic metal selenium in the scrubber water of coal-fired power plants. By reducing the salt concentration in water or increasing the residence time and temperature, the concentration of selenium oxyanions in functionalized membrane permeate can be reduced to less than 10 µg/L. Selenium is captured in membranes by both iron reduction to metallic selenium and iron oxide adsorption. The full-scale flat sheet functionalized membrane and spiral wound modules have also been developed. Iron NPs with alterable loadings are successfully synthesized inside the membrane module for real water applications.
Style APA, Harvard, Vancouver, ISO itp.
28

Pokethitiyook, Prayad. "Nitrate utilization as the final electron acceptor in a biological phosphorus removal system". Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040836/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Sun, Qingyun. "Iron and acid removal from acid mine drainage in open limestone systems". Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1315.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains ix, 112 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 56-57).
Style APA, Harvard, Vancouver, ISO itp.
30

Majavu, Avela. "Modeling of arsenic removal from aqueous media using selected coagulants". Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/d1017100.

Pełny tekst źródła
Streszczenie:
The waste water from the industrial production of the herbicide monosodium methyl arsenate was treated using coagulation. The coagulation process as developed in this research proved to be suitable for arsenic removal in aqueous media using chromium (III), calcium (II), and combination of calcium (II) and chromium (III), and magnesium (II). The results obtained suggest that the coagulation process can be used for the treatment of the waste water from the monosodium methyl arsenate production. Response surface methodology was used to study the effects of the various parameters, namely pH, mole ratios (Cr:As, Ca:As, and Mg:As), concentration of flocculent and initial arsenic concentration. To optimize the process conditions for the maximum removal of arsenic. Central composite and factorial designs were used to study the effects of these variables and to predict the effect of each. ANOVA was used to identify those factors which had significant effects on model quality and performance. The initial arsenic concentration appeared to be the only significant factor. These models were statistically tested and verified by confirmation experiments.
Style APA, Harvard, Vancouver, ISO itp.
31

Vercellotti, Joseph M. "Kinetics of iron removal using potassium permanganate and ozone". Ohio : Ohio University, 1988. http://www.ohiolink.edu/etd/view.cgi?ohiou1182873479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Liu, Ta-Kang. "Improvement in polymeric iron chloride (PICI) preparation for coagulation processes". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/32871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Hawley, Harmonie A. "TCE removal utilizing coupled zeolite sorption and advanced oxidation". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0428103-150434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Nyamukamba, Pardon. "Preparation and application of plasmon metal enhanced titanium dioxide photocatalyst for the removal of organics in water". Thesis, University of Fort Hare, 2016. http://hdl.handle.net/10353/2765.

Pełny tekst źródła
Streszczenie:
Advanced oxidation processes are capable of removing organic compounds that cannot be removed by conventional water treatment methods. Among the oxidation processes, photo-catalysis using titanium dioxide (TiO2) is a promising method but suffers from rapid electron-hole recombination rates and only absorbs UV light which is a small percentage (5 percent) of the total solar radiation. Therefore there is a need to reduce the recombination rates and also extend the absorption of the photo-catalyst into the visible region which constitutes 55 percent of the total solar radiation. The major aims of this study were to prepare plasmon metal decorated and doped TiO2 photo-catalysts immobilized on quartz substrates and test their photo-catalytic and antimicrobial activities. The effect of film thickness (loading) and use of different shapes of plasmon metal nanostructures was investigated. TiO2 thin films were prepared by a sputter coating technique while plasmon metal (Au & Ag)/carbon co-doped TiO2 by a simple sol gel process and plasmon metal films were prepared by the thermal evaporation technique. Different plasmon metal nanostructures (nanorods, dendrites, nanowires and spherical nanoparticles) were prepared using a wet chemical technique using sodium borohydride as the reducing agent. Nanocomposites of co-doped TiO2 photo-catalyst and plasmon elements of different proportions were also prepared. The prepared photo-catalysts were coated onto etched and MPTMS (3-Mercaptopropyl trimethoxysliane) treated quartz glass substrate which is a stable support favouring easy recovery. The prepared materials were characterized by XRD, HRTEM, TEM, HRSEM, FT-IR, SEM, PIXE and TGA while the doped TiO2 was characterized by XPS, BET, CHNS and Raman Spectroscopy. The effect of pH of solution, presence of other contaminants and salts in solution, initial concentration of the model pollutant and type of the plasmonic elements on the photocatalytic activity of TiO2 towards 4-(4-sulfophenylazo)-N,N-dimethyl aniline (methyl orange) were also investigated. The selected TiO2 photo-catalyst films were tested for antimicrobial properties. The effect of different types of plasmon elements on the antimicrobial activity of TiO2 against E. coli ATCC 3695 was evaluated under both sunlight and weak UV light. Under UV light, Ag showed the highest enhancement in photo-catalytic activity of TiO2 than Au and Cu. The photo-catalytic activity of TiO2 increased with an increase in Ag content to an optimum loading and then started to decrease with a further increase in loading. For Cu and Au, photo-activity activity increased with an increase in plasmon metal content. Under sunlight, Cu showed the highest enhancement of TiO2 photocatalytic compared to Ag and Au. The change in order of deposition showed that Au films enhanced the photo-activity better when they were deposited underneath rather than on top of TiO2 on quartz supports but Ag films performed better in enhancing photo-activity when they were deposited on top of TiO2. The use of bimetallic layers and three layer systems of different plasmon elements enhanced photo-catalytic activity better than the use of a monometallic layer. The presence of other organic contaminants and salts in solutions was found to reduce the photo-degradation of methyl orange due to preferential adsorption of other contaminants. When the pH was increased, the photocatalytic activity of TiO2 towards methyl orange was reduced. In antimicrobial studies, it was found that the plasmon elements greatly improved the antibacterial action of TiO2 against Escherichia coli ATCC 3695 in water and the best antibacterial action was observed with silver/carbon co-doped TiO2 photo-catalyst under sunlight The doped samples consisted of polydisperse nanoparticles which were found to be beneficial for photo-catalytic activity enhancement under sunlight.
Style APA, Harvard, Vancouver, ISO itp.
35

Mamtaz, Rowshan. "Low cost technology for removal of arsenic from water : with particular reference to Bangladesh". Thesis, University of Strathclyde, 2000. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21155.

Pełny tekst źródła
Streszczenie:
The contamination of groundwater by arsenic is currently a major concern in Bangladesh. Arsenic in groundwater was first detected in 1993 following reports of many people suffering from arsenical diseases. Further investigations showed the extent of the problem with large areas of the country's water supply being affected and millions of people at serious risk of arsenic poisoning. Technology for arsenic removal from water already exists. However, the socioeconomic conditions which prevail in Bangladesh, do not permit implementation of this type of technology on grounds of cost. The main objective of this study was to develop a low cost technique for the removal of arsenic from contaminated groundwater using the naturally occurring iron, which is another water quality constraint in Bangladesh. The approach was to form arsenic-iron complexes by coprecipitation and adsorption of arsenic on iron. It has been demonstrated that provided the iron levels are sufficiently high (say >_ 1.2 mg/1), simple shaking of a container and allowing the arsenic-iron complex to settle out for 3 days could reduce the concentration of arsenic from 0.10 mg/l to Bangladesh standard (0.05 mg/1). In experimental program, As(III) form of arsenic was used as this form is more likely to be present in groundwater. From laboratory studies, it was shown that the removal rate was largely controlled by the Fe/As ratio, pH and the As concentration. Arsenic removal increases with increasing Fe/As ratio and is favoured by increasing pH in the range of 5 to 8. Separation of the precipitates was achieved by settlement. Following prolonged settlement, it was found that arsenic removal could exceed the removal achieved by filtration through a 0.45 μm filter paper. The experiments demonstrated that about 77% arsenic removal could be achieved from water containing 0.2 mg/l As(III), 4.0 mg/1 Fe at pH 7.5 by manual flocculation (1 min manual mixing) and 3 days settlement. The use of ordinary charcoal, which is cheap and easily available, was investigated for removal of arsenic and was found to be ineffective. From maps of the known distributions of As, Fe and pH, it was evident that 63% of the area in Bangladesh complied with the Bangladesh standard for arsenic. By interpreting the maps and applying the potential removal by coprecipitation-adsorption and settlement technique, it was estimated that a further 8% of area would comply with the Bangladesh standard freeing an additional 7 million people from arsenic contamination.
Style APA, Harvard, Vancouver, ISO itp.
36

Palmer, Carolyn C. "Manganese removal by oxidation and mixed-media filtration". Thesis, Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/91051.

Pełny tekst źródła
Streszczenie:
Manganese is typically found in all water supplies in the United States. Manganese concentrations are usually higher in water obtained from groundwater sources or resei:voir hypolinutlons. This is because manganese is more soluble in the reducing conditions normally found in these waters. Although manganese is not known to cause any health related problems, the secondary drinking water MCL for manganese is 0.05 mg/L. This standard was set to eliminate aesthetic problems associated with manganese bearing waters. In this study continuous-flow filters were operated in both pre-oxidative (oxidized Mn applied to filters) and auto-oxidative (soluble Mn applied) modes. The oxidants used were dllorine (HOCl/OCl⁻) , potassium permanganate (KMnO₄), chlorine dioxide (ClO₂), and ozone (O₃). Other experimental parameters included: filter media type - manganese coated or non-coated, filter loading rate --2 to 5 gpm/f², operating pH -- pH 6 to pH 9, and temperature --5 to 25℃. The most important experimental parameter was whether or not the filter media had a prior oxidized coating of manganese. If this was the case the filter produced an effluent concentration of manganese below the MCL under all pre-oxidative conditions and under auto-oxidative conditions when the pH was above neutral. Increased flow rate through the filter caused deeper penetration of manganese into the filter bed. This should not prove to cause an effluent breakthrough problem for filter depths typically used in water treatment plants. Temperature and pH effected the reaction rate of manganese oxidation in both the pre- and auto-oxidative modes. In most cases th.is did not effect the effluent quality from manganese coated filter media. However, when non-coated media was used and no oxidant was added, a decrease in pH or temperature usually adversely effected effluent quality.
M.S.
Style APA, Harvard, Vancouver, ISO itp.
37

楊龍元 i Lung-yuen Christopher Yeong. "Removal of wastewater cod and nitrogen using fibrous packing media". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31210636.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Waern, Sandra. "Microalgae : A Green Purification of Reject Water for Biogas Production". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-135549.

Pełny tekst źródła
Streszczenie:
Microalgae are a diverse group of unicellular microorganisms found in various environments, ranging from small garden ponds to lakes with extreme salinity. Common for all microalgae is their ability to convert solar energy and carbon dioxide into chemical energy via photosynthesis. Additionally, they are capable of assimilating large amounts of nitrogen and phosphorus to produce proteins and lipids. These abilities have made microalgae an interesting candidate for next generation wastewater treatment coupled with production of biogas, a renewable energy source in advancement. At the Nykvarn wastewater treatment plant in Linköping, Sweden, 15,400,000 m3 of wastewater are treated annually to remove nitrogen and phosphorus that otherwise would risk to cause eutrophication in surrounding lakes and rivers. Moreover, the treatment plant manages large amounts of sewage sludge that is anaerobically digested to produce biogas and simultaneously reduce the sludge volumes. At the Nykvarn wastewater treatment plant, dewatering of the digested sludge results in a sludge fraction of about 30 % dry content and reject water, which is very nutrient-rich and therefore requires treatment in a SHARON process before it is reintroduced to the main stream of the wastewater treatment plant. In this thesis, the potential of microalgae for nutrient assimilation was studied by monitoring the nutrient removal efficiency of a mixed culture of microalgae when fed with 1) 100 % incoming wastewater, 2) 80 % incoming wastewater + 20 % reject water and 3) 60 % incoming wastewater + 40 % reject water. Furthermore, the effect of a process additive on the nutrient removal efficiency was evaluated. The results showed that microalgae are capable of removing 100 % of ingoing ammonium nitrogen and phosphate phosphorus when fed with incoming wastewater. At transition to 20 % and 40 % reject water, the culture was light-limited with a resulting ammonium reduction of 60 % and a phosphate reduction of around 30 %. The process additive slightly improved the ammonium reduction, however, mainly by formation of nitrite and nitrate by nitrifying bacteria. Moreover, a bio-methane potential test compared the methane potential of the microalgal biomass and the biomass from the SHARON process. The test resulted in an accumulated methane production around 70 mL g-1 VS-1 for the microalgal biomass and 35 mL g-1 VS-1 for the biomass from the SHARON process. That is, the mixed microalgal culture used in this experiment has a methane potential twice that of the biomass from the SHARON process. Finally, an economic analysis of a microalgae based process for purification of reject water showed that the operating costs exceed those of the SHARON process due to high energy consumption. It is thus necessary to choose a cultivation system that effectively utilize the solar energy, as well as maximize the biogas yield from anaerobic digestion of microalgal biomass.
Style APA, Harvard, Vancouver, ISO itp.
39

Abu-Ghararah, Ziad. "The effect of influent organic compounds on the performance of biological nutrient removal systems". Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/77907.

Pełny tekst źródła
Streszczenie:
The main objective of the research was to investigate the effect of influent organic compounds on the performance of biological nutrient removal system. To carry out the investigation, a pilot plant system was designed and constructed. The system was operated as a UCT process at an influent flow rate of 0.15 liters/minute and a sludge age of 13 days. The influent wastewater was domestic sewage. Excess biological phosphorus removal and steady-state conditions were established before making experimental measurements, or adding supplemental substrate. The effects of separate addition of formic, acetic, propionic, butyric, isobutyric, valeric, and isovaleric acid, plus glucose, addition on phosphorus release under anaerobic conditions, and phosphorus uptake under aerobic conditions, were studied. The effects of the organic acid additions on the removal of nitrogen and COD, and changes in SOUR, MLVSS, and metals such as iron, magnesium, calcium and potassium, were also studied. In all experiments, the specific substrate was added continuously to the first anaerobic reactor for three days at an influent concentration of 100 mg COD/liter. Samples were collected from each reactor at the end of the addition period and analyzed for orthophosphate, nitrate, nitrite, sulfate, volatile fatty acids, COD, MLVSS, pH and metals. All added substrates, except formic acid and dextrose, caused significant increases in phosphorus release in the anaerobic stage, and phosphorus uptake, in the aerobic stage, and consequently, an increase in phosphorus removal efficiency. The molar ratios of phosphorus release to volatile fatty acid added obtained for propionic acid, acetic acid, butyric acid, and valeric acid were 0.44, 0.77, 0.78, and 1.72 respectively. However, on a COD basis, the greatest ratios of mg phosphorus released to mg COD utilized was produced by the addition of acetic acid (0.37) and valeric acid (0.19). It was also found that the branched organic acids, isobutyric and isovaleric, caused more phosphorus release in the anaerobic stage and better phosphorus removal efficiencies as compared with the nonbranching forms of the same organic acids. The molar ratios of phosphorus release for these two acids were 0.8 and 2.3, respectively, and on a COD basis were 0.16 and 0.25. For engineering applications, it is suggested by this research that at least 20 mg COD equivalent of acetic acid is needed for the removal of I mg phosphorus. The results obtained by this investigation were consistent with the hypothesis proposed by Marais et al., 1983. The most recent biochemical models, proposed by Comeau et al., 1986 and Wentzel et al., 1986, were also tested using the data collected in the present investigation. Both models, in most cases, overestimated the ratios of phosphorus release to volatile fatty acid utilized. A speculative model for anaerobic metabolism by poly-p bacteria of volatile fatty acids which contain both odd and even numbers of carbon atoms was proposed. All added substrates produced no effect on both COD and TKN removals. Metal releases were found to correlate with the amount of phosphorus release.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
40

Occiano, Suzanne. "The mechanism for free chlorine oxidation of reduced manganese in mixed-media filters". Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/44082.

Pełny tekst źródła
Streszczenie:
The removal mechanisms of soluble manganese [Mn (1l)] through mixed-media filters were investigated. Experimentation was directed toward the continuous supply of an oxidant during column filter studies. Free chlorine (HOCl, OC1â ) was chosen to increase soluble manganese removal efficiency because chlorine is readily available and inexpensive. Filter media from four different water treatment plants were used in this study. Continuous-flow filter columns were operated in the presence and absence of 2.0 milligrams per Liter (mg/ L) free chlorine. Maintaining constant influent manganese concentrations of 1.0 mg/L and flow rates of 2.5 gallons per minute per foot squared (gpm/ft2), the operational pH values of 6-6.2, 7.8 and 8.8 were investigated. Results indicate that a continuous feed of free chlorine (2 mg/L) applied to the filter columns could increase manganese (II) removal efficiency. However, the amount and oxidation state of the MnOx(S) surface coating initially on the media and the influent pH had major influences upon the uptake of soluble manganese. From numerous Mn (II) uptake studies with different media and varying pH conditions, oxide-coated filter media continuously regenerated with free chlorine could result in increased soluble manganese removal through adsorption upon the MnOx(s) surface coating and subsequent oxidation directly on the media surface. The relationships of manganese removal and chlorine consumed were also explored. To further investigate the mechanisms of free chlorine oxidation for the removal of reduced manganese, pH 5.0 backtitrations were conducted following exhaustion of the filter media. The exposure of such low pll conditions to columns operated in the presence and absence of HOCI would ascertain if oxidation of the adsorbed Mn2+ was always occurring, regardless of an oxidant feed. Results indicated that in the absence of HOCI, the mechanisms for manganese removal on oxide-coated filter media were adsorption only. With the additional of HOCI, the adsorbed Mn2+ is oxidized directly on the surface of the media, thereby, continuously regenerating the surface oxide coating. Additional work was begun to ascertain if free chlorine could be used as a viable alternative to potassium permanganate (KMnO4) regeneration of oxide-coated filter media. Preliminary findings indicate from column cycling experiments that free chlorine could be used to regenerate oxide-coated filter media prior to backwashing.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
41

Cardona, Claudia. "Investigation of the effect of structure on reactivity in the titanium dioxide mediated photodecomposition of phenols and haloethers when irradiated at 350 NM in an aqueous medium". FIU Digital Commons, 1994. http://digitalcommons.fiu.edu/etd/2044.

Pełny tekst źródła
Streszczenie:
Three studies were performed to obtain fundamental mechanistic information on the TiO2 catalyzed photooxidations of organic substrates irradiated at 350 nm in dilute aqueous solutions under oxygenated conditions: (a) The photodecomposition of three haloethers, 2-chloroethyl ether, 4-chlorophenyl phenyl ether, and 4-bromophenyl phenyl ether, was investigated in an aqueous media at pH 7.0. (b) A comparative study of structure-reactivity was conducted on para-substituted phenols whose substituents range from electron-withdrawing to electron-donating in an aqueous media at pH 3.0. (c) The initial rates of the TiO2 catalyzed photodegratation of phenol were studied in an aqueous media at pH 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, and 13.7 and a pH effect profile was obtained and compared to the removal efficiency after four hours of irradiation. Controls were carried out throughout the three studies in the absence of light and under anoxic conditions, as well as without the semiconductor to evaluate the role of photolysis. The Langmuir-Hinshelwood model was employed in an attempt to characterize and evaluate differences in reactivity.
Style APA, Harvard, Vancouver, ISO itp.
42

Ifelebuegu, A. O. "Removal of endocrine disrupting chemicals in wastewater treatment applications". Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/2f9cce20-314e-42ee-8971-edb7304f8b42/1.

Pełny tekst źródła
Streszczenie:
This critical overview document (COD) presents, discusses and brings together the selected portfolio of publications that the author believes make a significant contribution to the field of wastewater treatment, focusing on the removal of endocrine disrupting chemicals (EDCs) in wastewater treatment applications. The aim of the research within this COD was to investigate the fate, mechanisms and optimisation of EDCs removal in wastewater treatment applications. The key objectives were to: 1. Investigate and understand the mechanisms of removal of EDCs in wastewater and sludge treatment processes. 2. Evaluate novel methods for the removal of EDCs in water and wastewater treatment applications. 3. Establish the kinetic and thermodynamic properties of the removal processes to inform process modelling of full scale design of treatment processes.
Style APA, Harvard, Vancouver, ISO itp.
43

Mwale, Monica. "Ammonia removal from water by ion exchange using South African and Zambian zeolite samples". Thesis, Rhodes University, 2000. http://hdl.handle.net/10962/d1005058.

Pełny tekst źródła
Streszczenie:
One problem of intensive fish culture systems is the progressive build-up of toxic wastes such as ammonia. The possibility of improving aquaculture water quality using two kinds of zeolite is discussed. Zeolites are alumino-silicates whose framework allows them to exchange cations. Ion exchange has been demonstrated to be competitive with other methods of ammonia removal due to the high selectivity for ammonia exhibited by zeolite materials. In this study an unknown Zambian zeolite (identified as laumontite by X-ray diffraction techniques) and Pratley clinoptilolite (a South African zeolite) were tested under laboratory conditions and in a fresh water recirculating system. Ammonia cation exchange capacities (CEC) and suitable application rates for efficient water treatment were determined using the batch and column ion exchange procedures. Estimated ammonia uptake, the most important criterion used to assess performance of zeolite filters was strongly influenced by zeolite type, particle size, pre-treatment, regeneration and ion exchange method used. Statistical analysis showed significant differences in average ammonia CEC values between clinoptilolite (14.94 mg g⁻¹) and laumontite (2.77 mg g⁻¹), with the former displaying a higher Na⁺ ® NH₄⁺ exchange rate especially in the early reaction stages. This difference accords with the higher purity of clinoptilolite, 47% as opposed to 4.7% for laumontite, which makes it a better zeolite for ammonium removal. CEC increased linearly as particle size of the clinoptilolite was reduced resulting in a linear regression model (y = 18.29 – 3.704 x; r² = 74%). Pre-treatment of clinoptilolite using 1N NaCl significantly improved the ammonia CEC of clinoptilolite. Overall performance of both the batch and column methods achieved after regeneration (18.3 mg g⁻¹) was 25% higher than the estimated CEC values (13.0 mg g⁻¹) for the unregenerated samples of clinoptilolite. Comparison of CEC estimates using Pratley clinoptilolite, showed that average batch CEC estimates were significantly lower than the column method estimates. The average ammonia CEC values estimated in a fresh water recirculating system (5.80 mg g⁻¹ and 4.12 mg g⁻¹ for the 0.7-1.0 and 1.0-1.4 mm particle sizes, respectively) were significantly lower than the column and batch estimates for the same particle sizes (P < 0.05). Some nitrite (NO₂) and nitrate (NO3) build up was experienced probably due to the growth of autotrophs in the filters. Mass balance of nitrogen (N) for the three treatments of the fish trial (0.7-1.0 mm, 1.0-1.4 mm and the control treatment that had no zeolite in the filter) indicated that less that 10% of the N was retained for growth. It was found that 60% of the NH₄-N present associated with the soluble N was available for absorption by the zeolite filter or biological nitrification and that a total of approximately 22% of NH₄-N available was absorbed by clinoptilolite. The results indicate that the rate of nitrification can be deductively estimated by allowing a zeolite filter to become a biological filter. It is concluded that water treatment by ion exchange using natural zeolites, provides a reliable and efficient method for ammonia removal and appears to be a viable supplementary water treatment method for fresh water systems.
Style APA, Harvard, Vancouver, ISO itp.
44

Cherosky, Phil Boone. "Anaerobic Digestion of Yard Waste and Biogas Purification by Removal of Hydrogen Sulfide". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337370128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Boving, Thomas Bernhard. "Performance and simulation of chemically enhanced solubilization and removal of residual chlorinated solvents from porous media". Diss., The University of Arizona, 1999. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1999_154_sip1_w.pdf&type=application/pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Eloff, Estie. "Evaluation of hydrogen as energy source for biological sulphate removal in industrial wastewaters". Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50344.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: Biological removal of sulphate from wastewater can be achieved by using a gas mixture consisting of 80% hydrogen and 20% carbon dioxide as energy and carbon sources. A novel reactor, including a venturi device for optimal hydrogen gas-liquid contact, and geotextile for immobilisation of the sulphate reducing bacterial community, was introduced. Efficient, relatively stable sulphate removal was obtained when the reactor was operated in continuous mode. The maximum sulphate removal rate obtained when the reactor was 8% packed with geotextile, was 1 g S04/(L.d) and 4 g S04/(L.d) when the reactor was 80% packed with geotextile. Kinetic batch studies showed that the highest sulphate removal rates were obtained at 29.5 °C; a pH of 7.5; initial sulphate concentration of 4000 mg/L; initial alkalinity of 1600 mg/L; cobalt concentration of 3 mg/L and when excess hydrogen gas was fed compared to what is stoichiometrically required (900 ml/min). Nickel addition showed inhibition at increased concentrations (>3 mg/L). The biofilm structure was observed on the geotextile with electron microscopy, while the viability of the biofilm was indicated with fluorescence microscopy. These observations indicated the suitability of the geotextile as a support material for biofilm formation in the sulphate reducing system. The stability of the sulphate reducing community was analysed, using the T-RFLP protocol. It was shown that the composition of the community changed after a period of 3 months, when the reactor was subjected to environmental changes. The reactor was also observed to be more efficient in terms of sulphate removal after the environmental changes, of which the temperature change from an average of 39 to 29.5 °C was the most prominent. Subsequently, it was speculated that the population shift was in favour of a more efficient system for sulphate removal. A dynamic, viable, mesophilic sulphate reducing community was therefore observed on the geotextile support, responsible for successful sulphate removal in a novel venturi-reactor. Defining optimal operating conditions, and a knowledge of biofilm structure and composition may contribute to the successful implementation of the biological sulphate removal component of the integrated chemical-biological process for the treatment of industrial wastewater, when hydrogen and carbon dioxide are supplied as the energy and carbon sources, respectively.
AFRIKAANSE OPSOMMING: Ongewenste industriële afval-water kan biologies behandel word deur 'n gasmengsel van 80% waterstof en 20% koolstofdioksied te gebruik vir sulfaat verwydering. 'n Reaktor wat 'n venturi apparaat bevat vir optimale waterstofgas-vloeistof kontak, asook geotekstiel vir die immobilisasie van die bakteriële sulfaatverwyderende gemeenskap, is bekend gestel. Effektiewe, relatief stabiele sulfaatverwydering is waargeneem sodra die reaktor op 'n kontinue basis gevoer is. Die optimale sulfaat verwyderingstempo wat bereik is as die reaktor 8% met geotekstiel gevul was, was 1 g S04/(L.d) en 4 g S04/(L.d) wanneer die reaktor 80% met geotekstiel gevul was. Kinetiese groepstudies het getoon dat die beste sulfaatverwydering bereik is by 'n gemiddelde temperatuur van 29.5 °C; pH van 7.5; aanvanklike sulfaatkonsentrasie van 4000 mg/L; aanvanklike sulfied konsentrasie van 268 mg/L; aanvanklike alkaliniteit van 1600 mg/L; kobalt konsentrasie van 3 mg/L, asook wanneer 'n oormaat waterstofgas gevoer is (900 ml/min), in vergelyking met wat stoichiometries benodig word. 'n Verhoogde byvoeging van nikkel by die voerwater (3 mg/L), het tekens van inhibisie getoon. Die biofilm struktuur is waargeneem op die geotekstiel met behulp van 'n elektronrnikroskoop, terwyl die lewensvatbaarheid van die biofilm aangedui is met behulp van fluoressensie mikroskopie. Hiermee is die bruikbaarheid van geotekstiel as 'n ondersteunings-matriks bevestig. Die stabiliteit van die sulfaatverwyderende gemeenskap is ondersoek deur die T-RFLP protokol te gebruik. Hiermee is aangedui dat die samestelling van die gemeenskap verander het na die 3 maande toets periode, toe die reaktor onderhewig was aan omgewings veranderinge. Die reaktor het ook 'n verbetering in sy sulfaatverwyderings vermoë getoon na hierdie tydperk van omgewingsveranderinge, waarvan 'n temperatuur verandering vanaf 'n gemiddeld van 39 na 29.5 °C die prominentste was. Dit is dus gespekuleer dat die populasie verskuiwing ten gunste was van 'n beter sisteem vir sulfaatverwydering. 'n Dinamiese, lewensvatbare, mesofiliese sulfaatreduserende gemeenskap, verantwoordelik vir die sulfaatverwydering in die venturi-reaktor, is dus waargeneem op die geotekstiel as 'n ondersteuningsmatriks. Met hierdie evaluasie kan die insig wat verkry is in die reaktor samestelling en die optimale kondisies vir die reaktor werking, bydra tot die suksesvolle implementasie van die biologiese komponent, in die geïntegreerde chemies-biologiese proses vir die behandeling van industriële afval water, wanneer 80% waterstof en 20% koolstofdioksied gas as energie en koolstofbron respektiewelik, gebruik word.
Style APA, Harvard, Vancouver, ISO itp.
47

Shah, Amisha D. "Antibiotics in water treatment the role of water quality conditions on their fate and removal during chlorination and nanofiltration /". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26658.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2009.
Committee Co-Chair: Huang, Ching-Hua; Committee Co-Chair: Kim, Jae-Hong; Committee Member: Li, Qilin; Committee Member: Mulholland, James; Committee Member: Wine, Paul; Committee Member: Yiacoumi, Sotira. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Style APA, Harvard, Vancouver, ISO itp.
48

Kuo, Ching-Jey. "FACTORS AFFECTING PARTICLE GROWTH AND RELATED ORGANIC MATTER REMOVAL DURING ALUM COAGULATION (SIZE DISTRIBUTION, TRIHALOMETHANES, HUMIC)". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183866.

Pełny tekst źródła
Streszczenie:
Effects of several important source-related and operation-related factors on particle formation and growth as well as potential particle and dissolved organic matter removal by alum coagulation are described. Two representative natural water sources, with low turbidities and high concentrations of dissolved organic matter, and one commercially available crystalline silica, with defined characteristics, were employed to establish initial aquatic particle and dissolved organic matter conditions. Six experimental variables utilized for evaluation include initial pH, initial turbidity, applied pre-ozonation dose, alum dose, flocculation time and sedimentation time. A bench-scale experimental apparatus with capabilities of ozonation, coagulation, sedimentation and membrane filtration was employed to conduct a series of selected experiments. Each factor investigated in this research proves to be able to inpart, individually or collectively, statistically significant effects on particle formation and growth during alum coagulation. While the addition of model particles shows significant enhancement in particle growth, it fails to demonstrate significant improvement in the removal of dissolved organic matter. On the contrary, effects of pH and alum dose on particle formation and growth are accompanied by corresponding effects on the removal of dissolved organic matter. Pre-ozonation of dissolved organic matter renders the dissolved organic matter more hydrophilic by increasing the number of carboxylic acid functional groups. This phenomenon can significantly improve or impede particle growth as well as dissolved organic matter removal during alum coagulation, depending on raw water chemistry and other operational factors. Alum coagulation under all of the conditions investigated in this research is demonstrably more effective in removing aquatic humic susbtances with higher apparent molecular weights and fewer carboxylic acid functional groups, as opposed to those with lower apparent molecular weight and more carboxylic acid functional groups. The predominant removal mechanisms were found to occur at the beginning stage of the coagulation process; that is, the rapid mixing period. The remaining dissolved organic matter and humic substances can form significant amounts of trihalomethanes upon reaction with chlorine.
Style APA, Harvard, Vancouver, ISO itp.
49

Zavareh, Mojgan. "Absorbents for water purification: functionalized ordered mesoporous silcate for the removal of 2,4-Dinirophenol and activated carbon filters for the removal of lead (II) from water". DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2012. http://digitalcommons.auctr.edu/dissertations/667.

Pełny tekst źródła
Streszczenie:
Imidazole functionalized ordered mesoporous silicate (MCM-IM) with high surface area was synthesized by the co-condensation of tetraethylorthosilicate, and n-[3 - (triethoxysilyl)propyl ]-4,5-dihydroimidazole, using cetyltrimethvlammonium bromide, CTAB, as a structure-directing agent in basic solution. Nitrogen porosimetry showed that MCM-IM exhibited typical Type IV adsorption-desorption isotherm, narrow average pore size distribution of 2.25 nm, surface area of 343 m2//g, and pore volume of 0.21 cm3 /g. MCM-IM exhibited a high affinity for 2,4-dinitrophenol and an adsorption capacity of 1.85 mmol/g was achieved. The adsorption was pH dependent with significant increase in adsorption capacity below pH 4. The sorption of 2,4-dinitrophenol on MCM-IM followed the Freundlich isotherm model, meaning, non-ideal, multiple, non ideal, multi-layer adsorption on heterogeneous surfaces. Asorption studies of Pb2+ on sulfonated and phosphonated activated carbon filters (ACF) were conducted in batch adsorption experiment. Kinetic experiment showed that lead (II) absorption reached equilibrium after 55 hours. Adsorption isotherm experiments showed that sulfonated activated carbons, S-ACF#1 and S-ACF#2 reached equilibrium capacities of 84.9 mg/g and 73.2 mg/g respectively, while phosphonated activated carbon. PVA-ACF, reached capacity of 66.2 mg/g. The adsorption was pH dependant and increased with pH. The sorption of Pb2+ on S-ACF#1 closely follows the Langmuir isotherm model, which means the sorption is monolayer and homogeneous surface. Sorption of Pb2+ on S-ACF#2 follows both Freundlich and Langmuir models and suggesting monolayer coverage on homogeneous surface or multi-layer on heterogeneous surfaces. Lead adsorption was not significantly affected by the prescene of competing alkali and alkali earth cations. except for Mg2+. In the presence of Mg2+ Pb2+ uptake was below 80%.
Style APA, Harvard, Vancouver, ISO itp.
50

Collins, Michael Robin. "Removal of aquatic organic matter and humic substances by selected water treatment processes". Diss., The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_382_sip1_w.pdf&type=application/pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii