Artykuły w czasopismach na temat „Water chemistry”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Water chemistry.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Water chemistry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lochman, V., V. Mareš i V. Fadrhonsová. "Development of air pollutant deposition, soil water chemistry and soil on Šerlich research plots, and water chemistry in a surface water source". Journal of Forest Science 50, No. 6 (11.01.2012): 263–83. http://dx.doi.org/10.17221/4624-jfs.

Pełny tekst źródła
Streszczenie:
&nbsp; In 1986 (1987) research plots were established in a forest stands on the south-western slope of &Scaron;erlich Mt., Orlick&eacute; hory Mts. (Kristina Colloredo-Mansfeld &ndash; Forest Administration Opočno), at the altitude of 950 to 970 m, to study deposition, chemistry of precipitation and soil water and development of soil chemistry. The plots were established on a clear-cut area, in a young stand and a mature stand of spruce, in a mature beech stand, and in an advanced growth of spruce and European mountain ash. The content of solutes in creek water was studied at the same time. Since 1993 the concentration of substances in precipitation water intercepted in the summit part of &Scaron;erlich Mt. has been measured. Research on water chemistry in the stands terminated in 1997. Soil analyses were done in 1986 (1987), 1993 and 1999. The load of acid air pollutants in these forest ecosystems was high in the eighties. After 1991 the deposition of H<sup>+</sup>, S/SO<sub>4</sub><sup>2&ndash;</sup>, N/NO<sub>3</sub><sup>&ndash; </sup>+ NH<sub>4</sub><sup>+</sup>, Mn, Zn, Al decreased. Similarly, an increase in pH was observed in soil water, and the concentrations of SO<sub>4</sub><sup>2&ndash;</sup>, and N, Al compounds decreased. But in 1993 the concentrations of SO<sub>4</sub><sup>2&ndash;</sup> and Al increased again under the spruce stand for several months. The concentrations of NO<sub>3</sub><sup>&ndash;</sup>, Mn, Zn and Al in the stream water also gradually decreased in the nineties. On the contrary, the average values of S-ions increased compared to those of 1987 to 1991. Strongly acid soil reaction developed in deeper layers until 1993. In the second half of the nineties the pH/H<sub>2</sub>O value somewhat increased again, however the reserve of K, Mg, Ca available cations in the mineral soil constantly decreased. The saturation of sorption complex by basic cations in the lower layer of rhizosphere did not reach even 10% in 1999. The forest ecosystems of &Scaron;erlich Mt. were also loaded by a high fall-out of Pb, and increased fall-out of Cu. The lack of balance of N-compound transformations and consumption in the soil and increased leaching of N in the form of nitrates contribute to soil acidification on the investigated plots.
Style APA, Harvard, Vancouver, ISO itp.
2

Maine, María A., Noemí L. Suñe, María C. Panigatti, Mariano J. Pizarro i Federico Emiliani. "Relationships between water chemistry and macrophyte chemistry in lotic and lentic environments". Fundamental and Applied Limnology 145, nr 2 (27.05.1999): 129–45. http://dx.doi.org/10.1127/archiv-hydrobiol/145/1999/129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hassan, Refat, i Samia Ibrahim. "Orientation on Electron-Transfer Nature for Oxidation of Some Water-Soluble Carbohydrates: Kinetics and Mechanism of Hexacholroiridate (IV) Oxidation of Methyl Cellulose in Aqueous Perchlorate Solutions". Trends Journal of Sciences Research 4, nr 2 (1.02.2019): 68–79. http://dx.doi.org/10.31586/chemistry.0402.04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Newman, Michael C., i John F. Schalles. "The water chemistry of Carolina bays: A regional survey". Archiv für Hydrobiologie 118, nr 2 (27.04.1990): 147–68. http://dx.doi.org/10.1127/archiv-hydrobiol/118/1990/147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

FREEMANTLE, MICHAEL. "CHEMISTRY FOR WATER". Chemical & Engineering News Archive 82, nr 29 (19.07.2004): 25–30. http://dx.doi.org/10.1021/cen-v082n029.p025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ormerod, Steve. "Chemistry of water and water pollution". Environmental Pollution 90, nr 3 (1995): 425. http://dx.doi.org/10.1016/0269-7491(95)90008-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fossati, Odile, Jean-Gabriel Wasson, Cécile Héry, Giovanna Salinas i Rubén Marín. "Impact of sediment releases on water chemistry and macroinvertebrate communities in clear water Andean streams (Bolivia)". Fundamental and Applied Limnology 151, nr 1 (23.03.2001): 33–50. http://dx.doi.org/10.1127/archiv-hydrobiol/151/2001/33.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Postnikov, Pavel S., Marina Trusova, Ksenia Kutonova i Viktor Filimonov. "Arenediazonium salts transformations in water media: Coming round to origins". Resource-Efficient Technologies, nr 1 (30.06.2016): 36–42. http://dx.doi.org/10.18799/24056529/2016/1/37.

Pełny tekst źródła
Streszczenie:
Aromatic diazonium salts belong to an important class of organic compounds. The chemistry of these compounds has been originally developedin aqueous media, but then chemists focused on new synthetic methods that utilize reactions of diazonium salts in organic solvents. However, according to the principles of green chemistry and resource-efficient technologies, the use of organic solvents should be avoided. This review summarizes new trends of diazonium chemistry in aqueous media that satisfy requirements of green chemistry and sustainable technology.
Style APA, Harvard, Vancouver, ISO itp.
9

van der Donck, Jacques C. J., Jurrian Bakker, Jeroen A. Smeltink, Robin B. J. Kolderweij, Ben C. M. B. van der Zon i Marc H. van Kleef. "Physical Chemistry of Water Droplets in Wafer Cleaning with Low Water Use". Solid State Phenomena 219 (wrzesień 2014): 134–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.219.134.

Pełny tekst źródła
Streszczenie:
Reduction of water and energy consumption is of importance for keeping viable industry in Europe. In 2012 the Eniac project Silver was started in order to reduce water and energy consumption in the semiconductor industry by 10% [1]. Cleaning of wafers is one of the key process steps that require a high volume of Ultra-Pure Water (UPW). For the production of a single wafer more than 120 cleaning steps may be required [2]. Furthermore, the reduction of the feature size makes devices more vulnerable to damage by mechanical action. This trend gives rise to the need for new, gentler cleaning processes.
Style APA, Harvard, Vancouver, ISO itp.
10

Barber, Jim. "Water, water everywhere, and its remarkable chemistry". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1655 (kwiecień 2004): 123–32. http://dx.doi.org/10.1016/j.bbabio.2003.10.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Wylde, Jonathan. "Technology Focus: Oilfield Chemistry (September 2021)". Journal of Petroleum Technology 73, nr 09 (1.09.2021): 57. http://dx.doi.org/10.2118/0921-0057-jpt.

Pełny tekst źródła
Streszczenie:
As production chemists, we are all aware of the overall concepts of improved oil recovery (IOR) and enhanced oil recovery (EOR). Perhaps, though, fewer of us are aware of the different idiosyncrasies that exist within (and even between) these two broad categories of recovery and then how chemistry and chemicals can have an effect upon these processes. I would like to propose that the lines once were quite distinct between IOR and EOR: IOR was a standard waterflood operation, and EOR (from a chemist’s perspective) was the addition of chemistry to that waterflood (typically polymer or surfactant). Nowadays, the science has evolved massively to create many sub-genres of IOR and EOR. A waterflood is rarely just a waterflood anymore. We can alternate water and gas injection. We can add chemical conformance aids to direct better the flow of water. We can change the salinity of the water to promote better wettability for higher recovery factors. The list goes on. One just has to search out the number of EOR papers vs. (pretty much) every other discipline of production chemistry to see the commitment this industry still has to the research of this discipline. In recent years, the focus has tended to move away from deep-reservoir EOR to focus on near-wellbore stimulation. Interestingly, the mechanistic considerations that we make as production chemists are nearly identical in all cases, and significant synergies exist between these subdisciplines. Therefore, from the recent research published by SPE, two focused topics of IOR/EOR have arisen: the use of nanoparticles and the use of water-shutoff technologies. Nanoparticle use is gaining significant traction in the oil and gas industry, and field applications are now being reported. The area of IOR/EOR is no exception. Water shutoff is not a new technology area. However, are these established, production-sustaining IOR techniques seeing a resurgence caused by the headwinds our industry has faced during the COVID-19 pandemic? Recommended additional reading at OnePetro: www.onepetro.org. OTC 30123 - Thermal and Rheological Investigations on N,N’-Methylenebis Acrylamide Cross-Linked Polyacrylamide Nanocomposite Hydrogels for Water-Shutoff Applications by Mohan Raj Keishnan, Alfiasal University, et al. IPTC 20210 - Chemical and Mechanical Water Shutoff in Horizontal Passive ICD Wells: Experience and Lessons Learned in Giant Darcy Reservoir by Mohamed Abdel-Basset, Schlumberger, et al. SPE 203831 - Efficient Preparation of Nanostarch Particles and Mechanism of Enhanced Oil Recovery in Low-Permeability Oil Reservoirs by Lei Zhang, China University of Geosciences, et al.
Style APA, Harvard, Vancouver, ISO itp.
12

Pickens, Robin Monegue, i Charles H. Jagoe. "Relationships between precipitation and surface water chemistry in three Carolina Bays". Archiv für Hydrobiologie 137, nr 2 (14.08.1996): 187–209. http://dx.doi.org/10.1127/archiv-hydrobiol/137/1996/187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fasaic, Kresimir, Ljubica Debeljak i Zdenek Adamek. "The effect of mineral fertilisation on water chemistry of carp ponds". Acta Ichthyologica et Piscatoria 19, nr 1 (30.06.1989): 71–83. http://dx.doi.org/10.3750/aip1989.19.1.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Rychen, Philippe, Werner Haenni i Laurent Pupunat. "Water Treatment Without Chemistry". CHIMIA International Journal for Chemistry 57, nr 10 (1.10.2003): 655–58. http://dx.doi.org/10.2533/000942903777678696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Uppenbrink, J. "CHEMISTRY: Just Add Water". Science 291, nr 5502 (12.01.2001): 211f—213. http://dx.doi.org/10.1126/science.291.5502.211f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Li, Chao-Jun, i Liang Chen. "Organic chemistry in water". Chem. Soc. Rev. 35, nr 1 (2006): 68–82. http://dx.doi.org/10.1039/b507207g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Li, Wen-Wei, Han-Qing Yu i Bruce E. Rittmann. "Chemistry: Reuse water pollutants". Nature 528, nr 7580 (grudzień 2015): 29–31. http://dx.doi.org/10.1038/528029a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

McCluskey, Adam. "Water promoted organic chemistry". Green Chemistry 1, nr 3 (1999): 167–68. http://dx.doi.org/10.1039/a902532d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Parikh, Sanjai J. "Soil and Water Chemistry". Soil Science 181, nr 1 (styczeń 2016): 44. http://dx.doi.org/10.1097/ss.0000000000000130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Levinger, N. E. "CHEMISTRY: Water in Confinement". Science 298, nr 5599 (29.11.2002): 1722–23. http://dx.doi.org/10.1126/science.1079322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Muñoz-Santiburcio, Daniel, i Dominik Marx. "Chemistry in nanoconfined water". Chemical Science 8, nr 5 (2017): 3444–52. http://dx.doi.org/10.1039/c6sc04989c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Chen, Carl W., i Luis E. Gomez. "Surface water chemistry. Comments". Environmental Science & Technology 23, nr 7 (lipiec 1989): 752–54. http://dx.doi.org/10.1021/es00065a002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

ROUHI, MAUREEN. "WATER CHEMISTRY BY DESIGN". Chemical & Engineering News 79, nr 46 (12.11.2001): 5. http://dx.doi.org/10.1021/cen-v079n046.p005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Müller, Achim, i Marc Henry. "Nanocapsule water-based chemistry". Comptes Rendus Chimie 6, nr 8-10 (sierpień 2003): 1201–8. http://dx.doi.org/10.1016/j.crci.2003.07.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Frimmel, Fritz H. "Preface: Fascination water chemistry". Environmental Science and Pollution Research 10, nr 1 (styczeń 2003): 57. http://dx.doi.org/10.1007/bf02980016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Sharpley, Andrew N. "Soil and Water Chemistry". Journal of Environment Quality 33, nr 4 (2004): 1583. http://dx.doi.org/10.2134/jeq2004.1583.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Uppenbrink, J. "CHEMISTRY: Just Add Water". Science 294, nr 5547 (23.11.2001): 1619e—1621. http://dx.doi.org/10.1126/science.294.5547.1619e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bilanin, Warren, Daniel Cubicciotti, Stanley J. Green, Robin L. Jones, Joe Santucci, Robert A. Shaw, Charles S. Welty i Chris J. Wood. "LWR water chemistry guidelines". Progress in Nuclear Energy 20, nr 1 (styczeń 1987): 1–42. http://dx.doi.org/10.1016/0149-1970(87)90010-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bröll, Dirk, Claudia Kaul, Alexander Krämer, Petra Krammer, Thomas Richter, Matthias Jung, Herbert Vogel i Peter Zehner. "Chemistry in Supercritical Water". Angewandte Chemie International Edition 38, nr 20 (18.10.1999): 2998–3014. http://dx.doi.org/10.1002/(sici)1521-3773(19991018)38:20<2998::aid-anie2998>3.0.co;2-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Oshovsky, Gennady V, David N Reinhoudt i Willem Verboom. "Supramolecular Chemistry in Water". Angewandte Chemie International Edition 46, nr 14 (26.03.2007): 2366–93. http://dx.doi.org/10.1002/anie.200602815.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

UCHIDA, Shunsuke. "Water Chemistry of Light Water Cooled Reactor Plants⑴". Journal of the Atomic Energy Society of Japan 51, nr 2 (2009): 106–11. http://dx.doi.org/10.3327/jaesjb.51.2_106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Singer, Ross, i Vinka Craver. "Silver Nanoparticle for Water Disinfection: Water Chemistry Effect". Proceedings of the Water Environment Federation 2009, nr 1 (1.01.2009): 933–41. http://dx.doi.org/10.2175/193864709793848095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lin, Chien C. "Hydrogen Water Chemistry Technology in Boiling Water Reactors". Nuclear Technology 130, nr 1 (kwiecień 2000): 59–70. http://dx.doi.org/10.13182/nt00-a3077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

KONOHIRA, Eiichi, Junko SHINDO, Takahito YOSHIOKA i Tokishige TODA. "Stream water chemistry in Japan". Journal of Japanese Association of Hydrological Sciences 36, nr 3 (2006): 145–49. http://dx.doi.org/10.4145/jahs.36.145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lavine, M. "CHEMISTRY: Water Lends a Hand". Science 316, nr 5825 (4.05.2007): 663a. http://dx.doi.org/10.1126/science.316.5825.663a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Yeston, J. S. "CHEMISTRY: Where Water Holds Still". Science 318, nr 5848 (12.10.2007): 171e—173e. http://dx.doi.org/10.1126/science.318.5848.171e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Rozental’, O. M., i L. N. Aleksandrovskaya. "Quality of water chemistry data". Water Resources 42, nr 4 (lipiec 2015): 500–507. http://dx.doi.org/10.1134/s0097807815040120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Davis, Anthony P., Stefan Kubik i Antonella Dalla Cort. "Editorial: Supramolecular chemistry in water". Organic & Biomolecular Chemistry 13, nr 9 (2015): 2499–500. http://dx.doi.org/10.1039/c5ob90026c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Cowan, R. L., B. M. Gordon, E. Kiss, L. L. Sundberg i R. B. Adamson. "Hydrogen water chemistry operating experience". International Journal of Pressure Vessels and Piping 25, nr 1-4 (styczeń 1986): 313–31. http://dx.doi.org/10.1016/0308-0161(86)90107-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Li, Pengfei, Xiang Li, Chenyu Yang, Xinjun Wang, Jianmin Chen i Jeffrey L. Collett. "Fog water chemistry in Shanghai". Atmospheric Environment 45, nr 24 (sierpień 2011): 4034–41. http://dx.doi.org/10.1016/j.atmosenv.2011.04.036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Dobbs, A. J. "Concentration units in water chemistry". Pure and Applied Chemistry 61, nr 8 (1.01.1989): 1511–15. http://dx.doi.org/10.1351/pac198961081511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Uppenbrink, J. "CHEMISTRY: Water in the Voids". Science 288, nr 5470 (26.05.2000): 1301a—1301. http://dx.doi.org/10.1126/science.288.5470.1301a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Klein, M. L. "CHEMISTRY: Water on the Move". Science 291, nr 5511 (16.03.2001): 2106–7. http://dx.doi.org/10.1126/science.1060087.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Bilanin, Warren, Daniel Cubicciotti, Robin L. Jones, Albert J. MacHiels, Larry Nelson i Chris J. Wood. "Hydrogen water chemistry for BWRs". Progress in Nuclear Energy 20, nr 1 (styczeń 1987): 43–70. http://dx.doi.org/10.1016/0149-1970(87)90011-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

LUBINEAU, A. "ChemInform Abstract: Chemistry in Water". ChemInform 27, nr 3 (12.08.2010): no. http://dx.doi.org/10.1002/chin.199603285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Scherrmann, Marie-Christine. "ChemInform Abstract: Chemistry in Water". ChemInform 42, nr 2 (16.12.2010): no. http://dx.doi.org/10.1002/chin.201102230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Thi, W. F., S. Hocuk, I. Kamp, P. Woitke, Ch Rab, S. Cazaux, P. Caselli i M. D’Angelo. "Warm dust surface chemistry in protoplanetary disks". Astronomy & Astrophysics 635 (marzec 2020): A16. http://dx.doi.org/10.1051/0004-6361/201731747.

Pełny tekst źródła
Streszczenie:
Context. The origin of the reservoirs of water on Earth is debated. The Earth’s crust may contain at least three times more water than the oceans. This crust water is found in the form of phyllosilicates, whose origin probably differs from that of the oceans. Aims. We test the possibility to form phyllosilicates in protoplanetary disks, which can be the building blocks of terrestrial planets. Methods. We developed an exploratory rate-based warm surface chemistry model where water from the gas-phase can chemisorb on dust grain surfaces and subsequently diffuse into the silicate cores. We applied the phyllosilicate formation to a zero-dimensional chemical model and to a 2D protoplanetary disk model (PRODIMO). The disk model includes in addition to the cold and warm surface chemistry continuum and line radiative transfer, photoprocesses (photodissociation, photoionisation, and photodesorption), gas-phase cold and warm chemistry including three-body reactions, and detailed thermal balance. Results. Despite the high energy barrier for water chemisorption on silicate grain surfaces and for diffusion into the core, the chemisorption sites at the surfaces can be occupied by a hydroxyl bond (–OH) at all gas and dust temperatures from 80 to 700 K for a gas density of 2 × 104 cm−3. The chemisorption sites in the silicate cores are occupied at temperatures between 250 and 700 K. At higher temperatures thermal desorption of chemisorbed water occurs. The occupation efficiency is only limited by the maximum water uptake of the silicate. The timescales for complete hydration are at most 105 yr for 1 mm radius grains at a gas density of 108 cm−3. Conclusions. Phyllosilicates can be formed on dust grains at the dust coagulation stage in protoplanetary disks within 1 Myr. It is however not clear whether the amount of phyllosilicate formed by warm surface chemistry is sufficient compared to that found in Solar System objects.
Style APA, Harvard, Vancouver, ISO itp.
48

Ingleson, Michael, i Valerio Fasano. "Recent Advances in Water-Tolerance in Frustrated Lewis Pair Chemistry". Synthesis 50, nr 09 (29.03.2018): 1783–95. http://dx.doi.org/10.1055/s-0037-1609843.

Pełny tekst źródła
Streszczenie:
A water-tolerant frustrated Lewis pair (FLP) combines a sterically encumbered Lewis acid and Lewis base that in synergy are able to activate small molecules even in the presence of water. The main challenge introduced by water comes from its reversible coordination to the Lewis acid which causes a marked increase in the Brønsted acidity of water. Indeed, the oxophilic Lewis acids typically used in FLP chemistry form water adducts whose acidity can be comparable to that of strong Brønsted acids such as HCl, thus they can protonate the Lewis base component of the FLP. Irreversible proton transfer quenches the reactivity of both the Lewis acid and the Lewis base, precluding small molecule activation. This short review discusses the efforts to overcome water-intolerance in FLP systems, a topic that in less than five years has seen significant progress.1 Introduction2 Water-Tolerance (or Alcohol-Tolerance) in Carbonyl Reductions3 Water-Tolerance with Stronger Bases4 Water-Tolerant Non-Boron-Based Lewis Acids in FLP Chemistry5 Conclusions
Style APA, Harvard, Vancouver, ISO itp.
49

Crump, D., D. Lean, M. Berrill, D. Coulson i L. Toy. "Spectral Irradiance in Pond Water: Influence of Water Chemistry". Photochemistry and Photobiology 70, nr 6 (grudzień 1999): 893–901. http://dx.doi.org/10.1111/j.1751-1097.1999.tb08299.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Boglovskii, A. V., V. B. Chernozubov, N. E. Chernykh, A. V. Gorbunov i R. Kh Birdin. "Setting up the water chemistry for thermal water treatment". Thermal Engineering 54, nr 7 (lipiec 2007): 525–29. http://dx.doi.org/10.1134/s004060150707004x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii