Gotowa bibliografia na temat „Vortex instability”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Vortex instability”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Vortex instability"

1

Koshel, Konstantin V., and Eugene A. Ryzhov. "Parametric resonance in the dynamics of an elliptic vortex in a periodically strained environment." Nonlinear Processes in Geophysics 24, no. 1 (2017): 1–8. http://dx.doi.org/10.5194/npg-24-1-2017.

Pełny tekst źródła
Streszczenie:
Abstract. The model of an elliptic vortex evolving in a periodically strained background flow is studied in order to establish the possible unbounded regimes. Depending on the parameters of the exterior flow, there are three classical regimes of the elliptic vortex motion under constant linear deformation: (i) rotation, (ii) nutation, and (iii) infinite elongation. The phase portrait for the vortex dynamics features critical points which correspond to the stationary vortex not changing its form and orientation. We demonstrate that, given superimposed periodic oscillations to the exterior deformation, the phase space region corresponding to the elliptic critical point experiences parametric instability leading to locally unbounded dynamics of the vortex. This dynamics manifests itself as the vortex nutates along the strain axis while continuously elongating. This motion continues until nonlinear effects intervene near the region associated with the steady-state separatrix. Next, we show that, for specific values of the perturbation parameters, the parametric instability is effectively suppressed by nonlinearity in the primal parametric instability zone. The secondary zone of the parametric instability, on the contrary, produces an effective growth of the vortex's aspect ratio.
Style APA, Harvard, Vancouver, ISO itp.
2

MacKay, R. S. "Instability of vortex streets." Dynamics and Stability of Systems 2, no. 1 (1987): 55–71. http://dx.doi.org/10.1080/02681118708806027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Acheson, D. J. "Instability of vortex leapfrogging." European Journal of Physics 21, no. 3 (2000): 269–73. http://dx.doi.org/10.1088/0143-0807/21/3/310.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Marxen, Olaf, Matthias Lang, and Ulrich Rist. "Vortex formation and vortex breakup in a laminar separation bubble." Journal of Fluid Mechanics 728 (July 1, 2013): 58–90. http://dx.doi.org/10.1017/jfm.2013.222.

Pełny tekst źródła
Streszczenie:
AbstractThe convective primary amplification of a forced two-dimensional perturbation initiates the formation of essentially two-dimensional large-scale vortices in a laminar separation bubble. These vortices are then shed from the bubble with the forcing frequency. Immediately downstream of their formation, the vortices get distorted in the spanwise direction and quickly disintegrate into small-scale turbulence. The laminar–turbulent transition in a forced laminar separation bubble is dominated by this vortex formation and breakup process. Using numerical and experimental data, we give an in-depth characterization of this process in physical space as well as in Fourier space, exploiting the largely periodic character of the flow in time as well as in the spanwise direction. We present evidence that a combination of more than one secondary instability mechanism is active during this process. The first instability mechanism is the elliptic instability of vortex cores, leading to a spanwise deformation of the cores with a spanwise wavelength of the order of the size of the vortex. Another mechanism, potentially an instability of flow in between two consecutive vortices, is responsible for three-dimensionality in the braid region. The corresponding disturbances possess a much smaller spanwise wavelength as compared to those amplified through elliptic instability. The secondary instability mechanisms occur for both fundamental and subharmonic frequency, respectively, even in the absence of continuous forcing, indicative of temporal amplification in the region of vortex formation.
Style APA, Harvard, Vancouver, ISO itp.
5

SCHAEFFER, NATHANAËL, and STÉPHANE LE DIZÈS. "Nonlinear dynamics of the elliptic instability." Journal of Fluid Mechanics 646 (March 8, 2010): 471–80. http://dx.doi.org/10.1017/s002211200999351x.

Pełny tekst źródła
Streszczenie:
In this paper, we analyse by numerical simulations the nonlinear dynamics of the elliptic instability in the configurations of a single strained vortex and a system of two counter-rotating vortices. We show that although a weakly nonlinear regime associated with a limit cycle is possible, the nonlinear evolution far from the instability threshold is, in general, much more catastrophic for the vortex. In both configurations, we put forward some evidence of a universal nonlinear transition involving shear layer formation and vortex loop ejection, leading to a strong alteration and attenuation of the vortex, and a rapid growth of the vortex core size.
Style APA, Harvard, Vancouver, ISO itp.
6

LEWEKE, T., and C. H. K. WILLIAMSON. "Cooperative elliptic instability of a vortex pair." Journal of Fluid Mechanics 360 (April 10, 1998): 85–119. http://dx.doi.org/10.1017/s0022112097008331.

Pełny tekst źródła
Streszczenie:
In this paper, we investigate the three-dimensional instability of a counter-rotating vortex pair to short waves, which are of the order of the vortex core size, and less than the inter-vortex spacing. Our experiments involve detailed visualizations and velocimetry to reveal the spatial structure of the instability for a vortex pair, which is generated underwater by two rotating plates. We discover, in this work, a symmetry-breaking phase relationship between the two vortices, which we show to be consistent with a kinematic matching condition for the disturbances evolving on each vortex. In this sense, the instabilities in each vortex evolve in a coupled, or ‘cooperative’, manner. Further results demonstrate that this instability is a manifestation of an elliptic instability of the vortex cores, which is here identified clearly for the first time in a real open flow. We establish a relationship between elliptic instability and other theoretical instability studies involving Kelvin modes. In particular, we note that the perturbation shape near the vortex centres is unaffected by the finite size of the cores. We find that the long-term evolution of the flow involves the inception of secondary transverse vortex pairs, which develop near the leading stagnation point of the pair. The interaction of these short-wavelength structures with the long-wavelength Crow instability is studied, and we observe significant modifications in the longevity of large vortical structures.
Style APA, Harvard, Vancouver, ISO itp.
7

Barnes, C. J., M. R. Visbal, and P. G. Huang. "On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions." Journal of Fluid Mechanics 799 (June 21, 2016): 128–58. http://dx.doi.org/10.1017/jfm.2016.320.

Pełny tekst źródła
Streszczenie:
This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.
Style APA, Harvard, Vancouver, ISO itp.
8

Mounce, A. M., S. Oh, S. Mukhopadhyay, et al. "Charge-induced vortex lattice instability." Nature Physics 7, no. 2 (2010): 125–28. http://dx.doi.org/10.1038/nphys1835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tophøj, Laust, and Hassan Aref. "Instability of vortex pair leapfrogging." Physics of Fluids 25, no. 1 (2013): 014107. http://dx.doi.org/10.1063/1.4774333.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sukhanovskii, A., A. Evgrafova, and E. Popova. "Instability of cyclonic convective vortex." IOP Conference Series: Materials Science and Engineering 208 (June 2017): 012040. http://dx.doi.org/10.1088/1757-899x/208/1/012040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii