Gotowa bibliografia na temat „Volume Surface Integral Equation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Volume Surface Integral Equation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Volume Surface Integral Equation"
Gomez, Luis J., Abdulkadir C. Yucel i Eric Michielssen. "Volume-Surface Combined Field Integral Equation for Plasma Scatterers". IEEE Antennas and Wireless Propagation Letters 14 (grudzień 2015): 1064–67. http://dx.doi.org/10.1109/lawp.2015.2390533.
Pełny tekst źródłaKaplan, Meydan, i Yaniv Brick. "A fast solver framework for acoustic hybrid integral equations". Journal of the Acoustical Society of America 152, nr 4 (październik 2022): A119. http://dx.doi.org/10.1121/10.0015743.
Pełny tekst źródłaRemis, R., i E. Charbon. "An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons". Advanced Electromagnetics 2, nr 1 (16.02.2013): 15. http://dx.doi.org/10.7716/aem.v2i1.23.
Pełny tekst źródłaUsner, B. C., K. Sertel i J. L. Volakis. "Doubly periodic volume–surface integral equation formulation for modelling metamaterials". IET Microwaves, Antennas & Propagation 1, nr 1 (2007): 150. http://dx.doi.org/10.1049/iet-map:20050344.
Pełny tekst źródłaEwe, Wei-Bin, Hong-Son Chu i Er-Ping Li. "Volume integral equation analysis of surface plasmon resonance of nanoparticles". Optics Express 15, nr 26 (2007): 18200. http://dx.doi.org/10.1364/oe.15.018200.
Pełny tekst źródłaAmundsen, Lasse. "The propagator matrix related to the Kirchhoff‐Helmholtz integral in inverse wavefield extrapolation". GEOPHYSICS 59, nr 12 (grudzień 1994): 1902–10. http://dx.doi.org/10.1190/1.1443577.
Pełny tekst źródłaRoco, M. C., i S. Mahadevan. "Scale-up Technique of Slurry Pipelines—Part 2: Numerical Integration". Journal of Energy Resources Technology 108, nr 4 (1.12.1986): 278–85. http://dx.doi.org/10.1115/1.3231277.
Pełny tekst źródłaNWOGU, OKEY G. "Interaction of finite-amplitude waves with vertically sheared current fields". Journal of Fluid Mechanics 627 (25.05.2009): 179–213. http://dx.doi.org/10.1017/s0022112009005850.
Pełny tekst źródłaNATSIOPOULOS, GEORGIOS. "ALTERNATIVE TIME DOMAIN BOUNDARY INTEGRAL EQUATIONS FOR THE SCALAR WAVE EQUATION USING DIVERGENCE-FREE REGULARIZATION TERMS". Journal of Computational Acoustics 17, nr 02 (czerwiec 2009): 211–18. http://dx.doi.org/10.1142/s0218396x09003938.
Pełny tekst źródłaJin, J. M., V. V. Liepa i C. T. Tai. "A Volume-Surface Integral Equation for Electromagnetic Scattering by Inhomogeneous Cylinders". Journal of Electromagnetic Waves and Applications 2, nr 5-6 (styczeń 1988): 573–88. http://dx.doi.org/10.1163/156939388x00170.
Pełny tekst źródłaRozprawy doktorskie na temat "Volume Surface Integral Equation"
Cao, Xiande. "Volume and Surface Integral Equations for Solving Forward and Inverse Scattering Problems". UKnowledge, 2014. http://uknowledge.uky.edu/ece_etds/65.
Pełny tekst źródłaPillain, Axelle. "Line, Surface, and Volume Integral Equations for the Electromagnetic Modelling of the Electroencephalography Forward Problem". Thesis, Télécom Bretagne, 2016. http://www.theses.fr/2016TELB0412/document.
Pełny tekst źródłaElectroencephalography (EEG) is a very useful tool for characterizing epileptic sources. Brain source imaging with EEG necessitates to solve the so-called EEG inverse problem. Its solution depends on the solution of the EEG forward problem that provides from known current sources the potential measured at the electrodes positions. For realistic head shapes, this problem can be solved with different numerical techniques. In particular surface integral equations necessitates to discretize only the interfaces between the brain compartments. However, the existing formulations do not take into account the anisotropy of the media. The work presented in this thesis introduces two new integral formulations to tackle this weakness. An indirect formulation that can handle brain anisotropies is proposed. It is discretized with basis functions conform to the mapping properties of the involved operators. The effect of this mixed discretization on brain source reconstruction is also studied. The second formulation focuses on the white matter fiber anisotropy. Obtaining the solution to the obtained numerical system rapidly is also highly desirable. The work is hence complemented with a proof of the preconditioning effect of Calderon strategies for multilayered media. The proposed theorem is applied in the context of solving the EEG forward problem. A Calderon preconditioner is also introduced for the wire electric field integral equation. Finally, preliminary results on the impact of a fast direct solver in solving the EEG forward problem are presented
Aas, Rune Øistein. "Electromagnetic Scattering : A Surface Integral Equation Formulation". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19240.
Pełny tekst źródłaHENRY, CLEMENT BERNARD PIERRE. "Volume Integral Equation Methods for Forward and Inverse Bioelectromagnetic Approaches". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914544.
Pełny tekst źródłaWei, Jiangong. "Surface Integral Equation Methods for Multi-Scale and Wideband Problems". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1408653442.
Pełny tekst źródłaRockway, John Dexter. "Integral equation formulation for object scattering above a rough surface /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5832.
Pełny tekst źródłaCaudron, Boris. "Couplages FEM-BEM faibles et optimisés pour des problèmes de diffraction harmoniques en acoustique et en électromagnétisme". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0062/document.
Pełny tekst źródłaIn this doctoral dissertation, we propose new methods for solving acoustic and electromagnetic three-dimensional harmonic scattering problems for which the scatterer is penetrable and inhomogeneous. The resolution of such problems is key in the computation of sonar and radar cross sections (SCS and RCS). However, this task is known to be difficult because it requires discretizing partial differential equations set in an exterior domain. Being unbounded, this domain cannot be meshed thus hindering a volume finite element resolution. There are two standard approaches to overcome this difficulty. The first one consists in truncating the exterior domain and renders possible a volume finite element resolution. Given that they approximate the scattering problems at the continuous level, truncation methods may however not be accurate enough for SCS and RCS computations. Inhomogeneous penetrable harmonic scattering problems can also be solved by coupling a volume variational formulation associated with the scatterer and surface integral equations related to the exterior domain. This approach is known as FEM-BEM coupling (Finite Element Method-Boundary Element Method). It is of great interest because it is exact at the continuous level. Classical FEM-BEM couplings are qualified as strong because they couple the volume variational formulation and the surface integral equations within one unique formulation. They are however not suited for solving high-frequency problems. To remedy this drawback, other FEM-BEM couplings, said to be weak, have been proposed. These couplings are actually domain decomposition algorithms iterating between the scatterer and the exterior domain. In this thesis, we introduce new acoustic and electromagnetic weak FEM-BEM couplings based on recently developed Padé approximations of Dirichlet-to-Neumann and Magnetic-to-Electric operators. The number of iterations required to solve these couplings is only slightly dependent on the frequency and the mesh refinement. The weak FEM-BEM couplings that we propose are therefore suited to accurate SCS and RCS computations at high frequencies
Chen, Yongpin, i 陈涌频. "Surface integral equation method for analyzing electromagnetic scattering in layered medium". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B4775283X.
Pełny tekst źródłapublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Grandison, Scott. "Boundary integral equation techniques in protein electrostatics and free surface flow problems". Thesis, University of East Anglia, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410096.
Pełny tekst źródłaHidle, Frederick B. "Application of the integral equation asymptotic phase method to penetrable scatterers". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15797.
Pełny tekst źródłaKsiążki na temat "Volume Surface Integral Equation"
Słobodzian, Piotr M. Electromagnetic analysis of shielded microwave structures: The surface integral equation approach. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2007.
Znajdź pełny tekst źródłaDunn, Mark H. The solution of a singular integral equation arising from a lifting surface theory for rotating blades. [S.l.]: Old Dominion University, 1991.
Znajdź pełny tekst źródłaP, Lock A., i United States. National Aeronautics and Space Administration., red. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaP, Lock A., i United States. National Aeronautics and Space Administration., red. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaP, Lock A., i United States. National Aeronautics and Space Administration., red. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaInstitute for Computer Applications in Science and Engineering., red. Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Znajdź pełny tekst źródłaDual Surface Electric Field Integral Equation. Storming Media, 2001.
Znajdź pełny tekst źródłaThe flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaMathematical Tables Part-Volume B : the Airy Integral : Volume 2: Giving Tables of Solutions of the Differential Equation. Cambridge University Press, 2016.
Znajdź pełny tekst źródłaHoring, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Pełny tekst źródłaCzęści książek na temat "Volume Surface Integral Equation"
Setukha, A. V. "Shifting the Boundary Conditions to the Middle Surface in the Numerical Solution of Neumann Boundary Value Problems Using Integral Equations". W Integral Methods in Science and Engineering, Volume 2, 233–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59387-6_23.
Pełny tekst źródłaSøndergaard, Thomas M. "Surface integral equation method for 2D scattering problems". W Green’s Function Integral Equation Methods in Nano-Optics, 49–204. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351260206-4.
Pełny tekst źródłaSøndergaard, Thomas M. "Surface integral equation method for the quasistatic limit". W Green’s Function Integral Equation Methods in Nano-Optics, 341–58. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351260206-8.
Pełny tekst źródłaSøndergaard, Thomas M. "Surface integral equation method for 3D scattering problems". W Green’s Function Integral Equation Methods in Nano-Optics, 359–80. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351260206-9.
Pełny tekst źródłaFerreira, M., i N. Vieira. "Multidimensional Time Fractional Diffusion Equation". W Integral Methods in Science and Engineering, Volume 1, 107–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59384-5_10.
Pełny tekst źródłaLiggett, James A. "Boundary Integral Equation Method for Free Surface Flow Analysis". W Computer Modeling of Free-Surface and Pressurized Flows, 83–113. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0964-2_4.
Pełny tekst źródłaSøndergaard, Thomas M. "Volume integral equation method for 3D scattering problems". W Green’s Function Integral Equation Methods in Nano-Optics, 265–304. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351260206-6.
Pełny tekst źródłaSøndergaard, Thomas M. "Volume integral equation method for cylindrically symmetric structures". W Green’s Function Integral Equation Methods in Nano-Optics, 305–40. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351260206-7.
Pełny tekst źródłaAmosov, A., i G. Panasenko. "Homogenization of the Integro-Differential Burgers Equation". W Integral Methods in Science and Engineering, Volume 1, 1–8. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4899-2_1.
Pełny tekst źródłaMennouni, A. "Kulkarni Method for the Generalized Airfoil Equation". W Integral Methods in Science and Engineering, Volume 2, 179–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59387-6_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Volume Surface Integral Equation"
Yan-Nan, Liu, i Xiao-Min Pan. "A Skeletonization accelerated MLFMA for Volume-Surface Integral Equation". W 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2020. http://dx.doi.org/10.1109/nemo49486.2020.9343568.
Pełny tekst źródłaWei, F., i A. E. Yilmaz. "Surface-preconditioned AIM-accelerated surface-volume integral equation solution for bioelectromagnetics". W 2012 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2012. http://dx.doi.org/10.1109/iceaa.2012.6328757.
Pełny tekst źródłaXie, Hui, Jiming Song, Ming Yang, Norio Nakagawa, Donald O. Thompson i Dale E. Chimenti. "A NOVEL BOUNDARY INTEGRAL EQUATION FOR SURFACE CRACK MODEL". W REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION VOLUME 29. AIP, 2010. http://dx.doi.org/10.1063/1.3362412.
Pełny tekst źródłaRebenaque, D. C., F. D. Q. Pereira, J. P. Garcia, J. L. G. Tornero i A. A. Melcon. "Volume/surface integral equation analysis of circular patch finite antennas". W IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330201.
Pełny tekst źródłaLi, Xianjin, Jun Hu, Yongpin Chen, Lin Lei, Ming Jiang i Zhi Rong. "Efficient Matrix Filling for a Volume-Surface Integral Equation Method". W 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2019. http://dx.doi.org/10.1109/iceaa.2019.8879054.
Pełny tekst źródłaChobanyan, Elene, Branislav M. Notaros i Milan M. Ilic. "Scattering analysis using generalized volume-surface integral equation method of moments". W 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905394.
Pełny tekst źródłaYucel, Abdulkadir C., Luis J. Gomez i Eric Michielssen. "An internally combined volume-surface integral equation for 3D plasma scatterers". W 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2015. http://dx.doi.org/10.1109/usnc-ursi.2015.7303406.
Pełny tekst źródłaEwe, Wei-Bin, Hong-Son Chu, Er-Ping Li i Le-Wei Li. "Investigation of Surface Plasmon Resonance of Nanoparticles using Volume Integral Equation". W 2007 Asia-Pacific Microwave Conference - (APMC 2007). IEEE, 2007. http://dx.doi.org/10.1109/apmc.2007.4554525.
Pełny tekst źródłaLi, Xianjin, Jun Hu, Yongpin Chen, Ming Jiang i Zaiping Nie. "A Domain Decomposition Method Based on Simplified Volume-Surface Integral Equation". W 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8608301.
Pełny tekst źródłaMoselhy, Tarek, i Luca Daniel. "Stochastic High Order Basis Functions for Volume Integral Equation with Surface Roughness". W 2007 IEEE Electrical Performance of Electronic Packaging. IEEE, 2007. http://dx.doi.org/10.1109/epep.2007.4387127.
Pełny tekst źródłaRaporty organizacyjne na temat "Volume Surface Integral Equation"
Samn, Sherwood. On a Volume Integral Equation Used in Solving 3-D Electromagnetic Interior Scattering Problems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada329439.
Pełny tekst źródłaLuc, Brunet. Systematic Equations Handbook : Book 1-Energy. R&D Médiation, maj 2015. http://dx.doi.org/10.17601/rd_mediation2015:1.
Pełny tekst źródła