Gotowa bibliografia na temat „Void nucleation and growth”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Void nucleation and growth”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Void nucleation and growth"
Lee, J. H., i Y. Zhang. "A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part I: Plastic Flow and Damage". Journal of Engineering Materials and Technology 116, nr 1 (1.01.1994): 69–79. http://dx.doi.org/10.1115/1.2904257.
Pełny tekst źródłaChen, Bin, X. Peng, Xiang Guo Zeng, X. Wu i S. Chen. "A Constitutive Model for Casting Magnesium Alloy Based on the Analysis of a Spherical Void Model". Materials Science Forum 546-549 (maj 2007): 221–24. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.221.
Pełny tekst źródłaWilliams, Cyril Labode. "Void Mediated Failure at the Extremes: Spallation in Magnesium and Aluminum". Metals 12, nr 10 (5.10.2022): 1667. http://dx.doi.org/10.3390/met12101667.
Pełny tekst źródłaChen, Jie, Darby J. Luscher i Saryu J. Fensin. "The Modified Void Nucleation and Growth Model (MNAG) for Damage Evolution in BCC Ta". Applied Sciences 11, nr 8 (9.04.2021): 3378. http://dx.doi.org/10.3390/app11083378.
Pełny tekst źródłaWciślik, Wiktor, i Sebastian Lipiec. "Voids Development in Metals: Numerical Modelling". Materials 16, nr 14 (14.07.2023): 4998. http://dx.doi.org/10.3390/ma16144998.
Pełny tekst źródłaLim, L. G., i F. P. E. Dunne. "Modelling void nucleation and growth in axisymmetric extrusion". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 211, nr 4 (1.04.1997): 285–97. http://dx.doi.org/10.1243/0954405971516266.
Pełny tekst źródłaWan, Ya-Ting, Jian-Li Shao, Guang-Ze Yu, Er-Fu Guo, Hua Shu i Xiu-Guang Huang. "Evolution of Preset Void and Damage Characteristics in Aluminum during Shock Compression and Release". Nanomaterials 12, nr 11 (28.05.2022): 1853. http://dx.doi.org/10.3390/nano12111853.
Pełny tekst źródłaMaire, Eric, Stanislas Grabon, Jérôme Adrien, Pablo Lorenzino, Yuki Asanuma, Osamu Takakuwa i Hisao Matsunaga. "Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels". Materials 12, nr 9 (1.05.2019): 1426. http://dx.doi.org/10.3390/ma12091426.
Pełny tekst źródłaSteglich, Dirk, Husam Wafai i Jacques Besson. "Anisotropic Plastic Deformation and Damage in Commercial Al 2198 T8 Sheet Metal". Key Engineering Materials 452-453 (listopad 2010): 97–100. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.97.
Pełny tekst źródłaBasaran, C., H. Ye, D. C. Hopkins, D. Frear i J. K. Lin. "Failure Modes of Flip Chip Solder Joints Under High Electric Current Density". Journal of Electronic Packaging 127, nr 2 (15.09.2004): 157–63. http://dx.doi.org/10.1115/1.1898338.
Pełny tekst źródłaRozprawy doktorskie na temat "Void nucleation and growth"
Thomson, Ronald D. "Ductile fracture by void nucleation, growth and coalescence". Thesis, University of Glasgow, 1985. http://theses.gla.ac.uk/6487/.
Pełny tekst źródłaMukherjee, Sunit. "Quantitative characterization of void nucleation and growth in HY-100 steels". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/19574.
Pełny tekst źródłaMcDermott, Patrick M. "Development and implementation of a shell element with pressure variation through the thickness and void growth and nucleation effects". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA369167.
Pełny tekst źródła"September 1999". Thesis advisor(s): Young W. Kwon. Includes bibliographical references (p. 107-109). Also Available online.
Labidi, Sana. "Elaboration des nanoparticules d'oxyde de zirconium par voie sol-gel : mise en forme et application pour la synthèse de biodiesel". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD085/document.
Pełny tekst źródłaIn this work, we have realized novel nanoparticulate catalysts ZrO₂-SO₄²⁻ for biofuel production. We have studied nucleation-growth kinetics of zirconium-oxo-alkoxy (ZOA) nanoparticles in the sol-gel process. The monodispersed nanoparticles of 3.6 nm diameter were realised in a sol-gel reactor with rapid (turbulent) micro-mixing of liquid solutions containing ZNP and H₂O in 1-propanol at 20°C. The nanocoatings were realised of stable colloids of ZOA nanoparticles on silica beads along with common powders obtained after precipitation of unstable colloids. The acid ZrO₂-SO₄²⁻" catalysts were prepared after drying at 80°C, wet impregnation in 0.25 mol.L⁻¹ aqueous solution of sulfuric acid and subsequent thermal treatment between 500 and 700°C and studied with BET, DTA-DSC, TEM, DRIFT, elemental analysis, DRX and other methods. The catalyst nanocoatings calcinated at 580°C showed strong activity in esterification reaction of palmitic acid in methanol at 65°C, which is about 50 times higher than that of nanopowders, and also possesses the highest stability towards recycling. Tha catalytic performance of catalytic nanocoatings was also confirmed on unedible and waste oils
Chandler, Mei Qiang. "Multiscale modeling of hydrogen-enhanced void nucleation". Diss., Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-03192007-103416.
Pełny tekst źródłaLandron, Caroline. "Ductile damage characterization in Dual-Phase steels using X-ray tomography". Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00738820.
Pełny tekst źródłaGautier, Maxime. "Etude de la formation de nanoparticules de carbone au cours de la décomposition thermique d'hydrocarbures : application à la coproduction de noir de carbone et d'hydrogène par craquage thermique du méthane par voie plasma". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM061/document.
Pełny tekst źródłaThis thesis takes part of the development of a direct decarbonation process of methane by plasma to produce both carbon black and hydrogen. This process is particularly interesting in an electrical mix context with low carbon emission. It proffers a solution to reduce drastically CO2 emissions rejected by the current carbon black and hydrogen ways of production, which are ones of the most polluting industrial processes.This study aims to develop reliable and robust numerical methods for a better understanding and a greater control of the morphologic features of the carbon black generated. These features play a key role in the quality and applications of the carbon black produced. This research retraces the evolution of the carbon structure from the molecules of the fuel to the formation of nanoparticles and solid microstructures. It tackles different phenomenon such as: nucleation, chemical growth, coagulation, maturity and aggregation.Numerical tools and methods were developed thereby and enable to simulate carbon particle formation. They were successfully implemented in a commercial CFD software. Eventually numerical simulation of the plasma process were performed, integrating heat transfers and turbulence
Shabrov, Maxim N. "Micromechanical modeling of void nucleation in two phase materials /". View online version; access limited to Brown University users, 2005. http://wwwlib.umi.com/dissertations/fullcit/3174672.
Pełny tekst źródłaLieberman, Evan. "Simulation of Void Nucleation in Single-Phase Copper Polycrystals". Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/707.
Pełny tekst źródłaWarren, Dale Ross Seinfeld John H. "Nucleation and growth of aerosols /". Diss., Pasadena, Calif. : California Institute of Technology, 1986. http://resolver.caltech.edu/CaltechETD:etd-03212008-085926.
Pełny tekst źródłaKsiążki na temat "Void nucleation and growth"
Chandra, Abhijit. Void nucleation and growth during plane strain extrusion. [S.l.]: The Danish Center for Applied Mathematics and Mechanics, The Technical University of Denmark, 1992.
Znajdź pełny tekst źródłaBennasar, A. Modelling of void nucleation and growth in particle filled polymer film processing. Manchester: UMIST, 1994.
Znajdź pełny tekst źródłaSangwal, Keshra. Nucleation and Crystal Growth. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119461616.
Pełny tekst źródłaLamanna, Grazia. On nucleation and droplet growth. Eindhoven: University of Eindhoven, 2000.
Znajdź pełny tekst źródłaDubrovskii, Vladimir G. Nucleation Theory and Growth of Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39660-1.
Pełny tekst źródłaElectrocrystallization: Fundamentals of nucleation and growth. Boston, MA: Kluwer Academic Publishers, 2002.
Znajdź pełny tekst źródłaVan Driessche, Alexander E. S., Matthias Kellermeier, Liane G. Benning i Denis Gebauer, red. New Perspectives on Mineral Nucleation and Growth. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45669-0.
Pełny tekst źródłaJohn, Garside, Mersmann Alfons, Nývlt Jaroslav, Institution of Chemical Engineers (Great Britain) i European Federation of Chemical Engineering. Working Party on Crystallization., red. Measurement of crystal growth and nucleation rates. Wyd. 2. Railway Terrace, Rugby, UK: Institution of Chemical Engineers, 2002.
Znajdź pełny tekst źródłaCrystal growth for beginners: Fundamentals of nucleation, crystal growth, and epitaxy. Singapore: World Scientific, 1995.
Znajdź pełny tekst źródłaCrystal growth for beginners: Fundamentals of nucleation, crystal growth and epitaxy. Wyd. 2. Singapore: World Scientific, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Void nucleation and growth"
Fortin, Elizabeth, Benjamin Shaffer, Saul Opie, Matthew Catlett i Pedro Peralta. "Inter- and Transgranular Nucleation and Growth of Voids in Shock Loaded Copper Bicrystals". W The Minerals, Metals & Materials Series, 97–108. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05749-7_11.
Pełny tekst źródłaMutaftschiev, Boyan. "Nucleation". W Crystal Growth in Science and Technology, 27–48. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0549-1_2.
Pełny tekst źródłaKashchiev, D. "Nucleation". W Science and Technology of Crystal Growth, 53–66. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0137-0_5.
Pełny tekst źródłaRay, Hem Shanker, i Saradindukumar Ray. "Nucleation and Growth". W Kinetics of Metallurgical Processes, 171–92. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0686-0_7.
Pełny tekst źródłaVisintin, Augusto. "Nucleation and Growth". W Models of Phase Transitions, 178–202. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4078-5_8.
Pełny tekst źródłaVere, A. W. "Transport, Nucleation and Growth". W Crystal Growth, 5–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9897-5_2.
Pełny tekst źródłaVan Rosmalen, G. M., i A. E. Van Der Heijden. "Secondary Nucleation". W Science and Technology of Crystal Growth, 259–77. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0137-0_20.
Pełny tekst źródłaKardos, J. L. "Void Growth and Dissolution". W Processing of Composites, 182–207. München: Carl Hanser Verlag GmbH & Co. KG, 2000. http://dx.doi.org/10.3139/9783446401778.006.
Pełny tekst źródłaRatke, Lorenz, i Peter W. Voorhees. "Nucleation, Growth and Coarsening". W Growth and Coarsening, 205–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04884-9_10.
Pełny tekst źródłaMarkov, Ivan V. "Nucleation at Surfaces". W Springer Handbook of Crystal Growth, 17–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74761-1_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Void nucleation and growth"
Kadam, Sambhaji T., Ritunesh Kumar i Kuldeep Baghel. "Bubble Growth at Nucleation Cavity in Microchannels". W ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22083.
Pełny tekst źródłaVairagar, A. V. "Study of Electromigration Induced Void Nucleation, Growth, and Movement in Cu Interconnects". W STRESS-INDUCED PHENOMENA IN METALLIZATION: Seventh International Workshop on Stress-Induced Phenomena in Metallization. AIP, 2004. http://dx.doi.org/10.1063/1.1845843.
Pełny tekst źródłaHauschildt, M., M. Gall, C. Hennesthal, G. Talut, O. Aubel, K. B. Yeap i E. Zschech. "Electromigration void nucleation and growth analysis using large-scale early failure statistics". W PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4881343.
Pełny tekst źródłaBower, A. F., i L. B. Freund. "Analysis of stress-induced void nucleation and growth in passivated interconnect lines". W Stress-induced phenomena in metallization: Second international workshop. AIP, 1994. http://dx.doi.org/10.1063/1.45704.
Pełny tekst źródłaBelak, James. "Molecular dynamics simulation of high strain-rate void nucleation and growth in copper". W The tenth American Physical Society topical conference on shock compression of condensed matter. AIP, 1998. http://dx.doi.org/10.1063/1.55642.
Pełny tekst źródłaFortin, Elizabeth V., Saul Opie, Andrew D. Brown, Jenna M. Lynch, Eric Loomis i Pedro D. Peralta. "Void Nucleation and Growth at Grain Boundaries in Copper Bicrystals With Surface Perturbations". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67649.
Pełny tekst źródłaButcher, Cliff, i Zengtao Chen. "A Coupled-Constitutive Model for Ductile Fracture: Void Nucleation to Coalescence". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39229.
Pełny tekst źródłaYamagiwa, Kenta, Satoshi Kataoka, Satoshi Izumi i Shinsuke Sakai. "Measurement of Three Dimensional Geometry of Creep Void and Grain Boundary With Combining 3D-EBSD Method and SEM Images". W ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57641.
Pełny tekst źródłaHammi, Youssef, Mark F. Horstemeyer i Doug J. Bammann. "An Anisotropic Damage Model for Ductile Metals". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32887.
Pełny tekst źródłaRawat, S., Manoj Warrier, S. Chaturvedi, V. M. Chavan, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Effect of Temperature on the Void Nucleation and Growth Parameters for Single Crystal Copper". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605750.
Pełny tekst źródłaRaporty organizacyjne na temat "Void nucleation and growth"
Abeyaratne, Rohan. Void Nucleation in Nonlinear Solid Mechanics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1990. http://dx.doi.org/10.21236/ada228890.
Pełny tekst źródłaFensin, Saryu Jindal. Influence of Grain Boundary Properties and Orientation on Void Nucleation. Office of Scientific and Technical Information (OSTI), marzec 2016. http://dx.doi.org/10.2172/1239901.
Pełny tekst źródłaFensin, Saryu Jindal. Influence of Grain Boundary Properties and Orientation on Void Nucleation. Office of Scientific and Technical Information (OSTI), marzec 2016. http://dx.doi.org/10.2172/1242916.
Pełny tekst źródłaLieberman, Evan, Ricardo A. Lebensohn, Edward Martin Kober i Anthony Rollett. Microstructural Effects on Void Nucleation in Single-Phase Copper Polycrystals. Office of Scientific and Technical Information (OSTI), maj 2015. http://dx.doi.org/10.2172/1183396.
Pełny tekst źródłaReding, Derek J., Pavol Stofko, Robert J. Dorgan i Michael E. Nixon. Void Growth and Coalescence Simulations. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2013. http://dx.doi.org/10.21236/ada593137.
Pełny tekst źródłaWang, Chia-Gee. Controlled Nucleation and Growth in Semiconductor Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2003. http://dx.doi.org/10.21236/ada415932.
Pełny tekst źródłaEdwards, L. Condensation growth and nucleation scavenging over large fires. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/5053684.
Pełny tekst źródłaEdwards, L. L. Simulations of cloud condensation droplet nucleation and growth. Office of Scientific and Technical Information (OSTI), marzec 1989. http://dx.doi.org/10.2172/5988563.
Pełny tekst źródłaAppy, David. Nucleation and growth of metals on carbon surfaces. Office of Scientific and Technical Information (OSTI), sierpień 2014. http://dx.doi.org/10.2172/1505184.
Pełny tekst źródłaFausett, Diego Manuel. Tracking Void Growth in Material Undergoing Tensile Loading. Office of Scientific and Technical Information (OSTI), lipiec 2018. http://dx.doi.org/10.2172/1463467.
Pełny tekst źródła