Artykuły w czasopismach na temat „VOICE SIGNALS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „VOICE SIGNALS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ahamed, Mohamed Rasmi Ashfaq, Mohammad Hossein Babini i Hamidreza Namazi. "Complexity-based decoding of the relation between human voice and brain activity". Technology and Health Care 28, nr 6 (17.11.2020): 665–74. http://dx.doi.org/10.3233/thc-192105.
Pełny tekst źródłaMittal, Vikas, i R. K. Sharma. "Classification of Pathological Voices Using Glottal Signal Parameters". Journal of Computational and Theoretical Nanoscience 16, nr 9 (1.09.2019): 3999–4002. http://dx.doi.org/10.1166/jctn.2019.8284.
Pełny tekst źródłaSilva, Augusto Felix Tavares, Samuel R. de Abreu, Silvana Cunha Costa i Suzete Elida Nobrega Correia. "Classificação de sinais de voz através da aplicação da transformada Wavelet Packet e redes neurais artificiais". Revista Principia - Divulgação Científica e Tecnológica do IFPB 1, nr 37 (21.12.2017): 34. http://dx.doi.org/10.18265/1517-03062015v1n37p34-41.
Pełny tekst źródłaChoi, Hee-Jin, i Ji-Yeoun Lee. "Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex". Applied Sciences 11, nr 15 (28.07.2021): 6966. http://dx.doi.org/10.3390/app11156966.
Pełny tekst źródłaSwanborough, Huw, Matthias Staib i Sascha Frühholz. "Neurocognitive dynamics of near-threshold voice signal detection and affective voice evaluation". Science Advances 6, nr 50 (grudzień 2020): eabb3884. http://dx.doi.org/10.1126/sciadv.abb3884.
Pełny tekst źródłaLiu, Boquan, Evan Polce i Jack Jiang. "Application of Local Intrinsic Dimension for Acoustical Analysis of Voice Signal Components". Annals of Otology, Rhinology & Laryngology 127, nr 9 (17.06.2018): 588–97. http://dx.doi.org/10.1177/0003489418780439.
Pełny tekst źródłaMartin, David P., i Virginia I. Wolfe. "Effects of Perceptual Training Based upon Synthesized Voice Signals". Perceptual and Motor Skills 83, nr 3_suppl (grudzień 1996): 1291–98. http://dx.doi.org/10.2466/pms.1996.83.3f.1291.
Pełny tekst źródłaZhu, Xin-Cheng, Deng-Huang Zhao, Yi-Hua Zhang, Xiao-Jun Zhang i Zhi Tao. "Multi-Scale Recurrence Quantification Measurements for Voice Disorder Detection". Applied Sciences 12, nr 18 (14.09.2022): 9196. http://dx.doi.org/10.3390/app12189196.
Pełny tekst źródłaBartusiak, Emily R., i Edward J. Delp. "Frequency Domain-Based Detection of Generated Audio". Electronic Imaging 2021, nr 4 (18.01.2021): 273–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.4.mwsf-273.
Pełny tekst źródłaLiu, Boquan, Evan Polce, Julien C. Sprott i Jack J. Jiang. "Applied Chaos Level Test for Validation of Signal Conditions Underlying Optimal Performance of Voice Classification Methods". Journal of Speech, Language, and Hearing Research 61, nr 5 (17.05.2018): 1130–39. http://dx.doi.org/10.1044/2018_jslhr-s-17-0250.
Pełny tekst źródłaGeng, Lei, Hongfeng Shan, Zhitao Xiao, Wei Wang i Mei Wei. "Voice pathology detection and classification from speech signals and EGG signals based on a multimodal fusion method". Biomedical Engineering / Biomedizinische Technik 66, nr 6 (29.11.2021): 613–25. http://dx.doi.org/10.1515/bmt-2021-0112.
Pełny tekst źródłaMcNair, Bruce E. "Processing of encrypted voice signals". Journal of the Acoustical Society of America 83, nr 6 (czerwiec 1988): 2474. http://dx.doi.org/10.1121/1.396315.
Pełny tekst źródłaScalassara, P., C. Maciel i J. Pereira. "Predictability analysis of voice signals". IEEE Engineering in Medicine and Biology Magazine 28, nr 5 (wrzesień 2009): 30–34. http://dx.doi.org/10.1109/memb.2009.934245.
Pełny tekst źródłaFonseca, E. S., i J. C. Pereira. "Normal versus pathological voice signals". IEEE Engineering in Medicine and Biology Magazine 28, nr 5 (wrzesień 2009): 44–48. http://dx.doi.org/10.1109/memb.2009.934248.
Pełny tekst źródłaKreiman, Jody. "Why we talk about voices as we do". Journal of the Acoustical Society of America 153, nr 3_supplement (1.03.2023): A78. http://dx.doi.org/10.1121/10.0018224.
Pełny tekst źródłaHyun Kim, Bong, i . "Analysis of Voice Signals Change by Voice Modulation Program". International Journal of Engineering & Technology 7, nr 3.34 (1.09.2018): 506. http://dx.doi.org/10.14419/ijet.v7i3.34.19369.
Pełny tekst źródłaLei, Zhengdong, Lisa Martignetti, Chelsea Ridgway, Simon Peacock, Jon T. Sakata i Nicole Y. K. Li-Jessen. "Wearable Neck Surface Accelerometers for Occupational Vocal Health Monitoring: Instrument and Analysis Validation Study". JMIR Formative Research 6, nr 8 (5.08.2022): e39789. http://dx.doi.org/10.2196/39789.
Pełny tekst źródłaWang, Hui Jun, i Guan Li. "A Design of the Bone Conduction Ultrasonic Hearing Device". Advanced Materials Research 1030-1032 (wrzesień 2014): 2330–33. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.2330.
Pełny tekst źródłaPeterson, K. Linnea, Katherine Verdolini-Marston, Julie M. Barkmeier i Henry T. Hoffman. "Comparison of Aerodynamic and Electroglottographic Parameters in Evaluating Clinically Relevant Voicing Patterns". Annals of Otology, Rhinology & Laryngology 103, nr 5 (maj 1994): 335–46. http://dx.doi.org/10.1177/000348949410300501.
Pełny tekst źródłaChan, Karen M. K., i Edwin M.-L. Yiu. "The Effect of Anchors and Training on the Reliability of Perceptual Voice Evaluation". Journal of Speech, Language, and Hearing Research 45, nr 1 (luty 2002): 111–26. http://dx.doi.org/10.1044/1092-4388(2002/009).
Pełny tekst źródłaSprecher, Alicia, Aleksandra Olszewski, Jack J. Jiang i Yu Zhang. "Updating signal typing in voice: Addition of type 4 signals". Journal of the Acoustical Society of America 127, nr 6 (czerwiec 2010): 3710–16. http://dx.doi.org/10.1121/1.3397477.
Pełny tekst źródłaWei, Yan Ping, i Hai Liu Xiao. "Design of Voice Signal Visualization Acquisition System Based on Sound Card and MATLAB". Applied Mechanics and Materials 716-717 (grudzień 2014): 1272–76. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.1272.
Pełny tekst źródłaHerzel, Hanspeter. "Bifurcations and Chaos in Voice Signals". Applied Mechanics Reviews 46, nr 7 (1.07.1993): 399–413. http://dx.doi.org/10.1115/1.3120369.
Pełny tekst źródłaO'Callaghan, Tiffany. "Voice almighty: decoding speech's secret signals". New Scientist 219, nr 2925 (lipiec 2013): 38–41. http://dx.doi.org/10.1016/s0262-4079(13)61754-6.
Pełny tekst źródłaAl-Rawashdeh, A. Y., i Z. Al-Qadi. "Using Wave Equation to Extract Digital Signal Features". Engineering, Technology & Applied Science Research 8, nr 4 (18.08.2018): 3153–56. http://dx.doi.org/10.48084/etasr.2088.
Pełny tekst źródłaRuben, Aarne. "The “unknown voice” in Western history since Socrates". Semiotica 2017, nr 215 (1.03.2017): 269–80. http://dx.doi.org/10.1515/sem-2016-0032.
Pełny tekst źródłaMaryn, Youri, i Andrzej Zarowski. "Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement". American Journal of Speech-Language Pathology 24, nr 4 (listopad 2015): 608–18. http://dx.doi.org/10.1044/2015_ajslp-14-0082.
Pełny tekst źródłavan de Wouwer, G., P. Scheunders, D. van Dyck, M. de Bodt, F. Wuyts i P. H. van de Heyning. "Voice Recognition from Spectrograms: A Wavelet Based Approach". Fractals 05, supp01 (kwiecień 1997): 165–72. http://dx.doi.org/10.1142/s0218348x97000735.
Pełny tekst źródłaRestrepo, Juan F., i Gastón Schlotthauer. "Invariant Measures Based on the U-Correlation Integral: An Application to the Study of Human Voice". Complexity 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/2173640.
Pełny tekst źródłaLin, Chin-Feng, Tsung-Jen Su, Hung-Kai Chang, Chun-Kang Lee, Shun-Hsyung Chang, Ivan A. Parinov i Sergey Shevtsov. "Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals". Applied Sciences 10, nr 1 (27.12.2019): 233. http://dx.doi.org/10.3390/app10010233.
Pełny tekst źródłaSateesh, Tulluri, Pantham Saikishore, Manchala Ganga Akhila, Karli Nikhil Kumar i Gopagani Ajay Bhargav. "Implementation of Echo Cancellation Ana Noise Reduction System". International Journal for Research in Applied Science and Engineering Technology 10, nr 11 (30.11.2022): 1083–89. http://dx.doi.org/10.22214/ijraset.2022.47560.
Pełny tekst źródłaYin, Shu Hua. "Design of the Auxiliary Speech Recognition System of Super-Short-Range Reconnaissance Radar". Applied Mechanics and Materials 556-562 (maj 2014): 4830–34. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.4830.
Pełny tekst źródłaMahesh Kumar, Pala. "A New Human Voice Recognition System". Asian Journal of Science and Applied Technology 5, nr 2 (5.11.2016): 23–30. http://dx.doi.org/10.51983/ajsat-2016.5.2.931.
Pełny tekst źródłaDavies-Thompson, Jodie, Giulia V. Elli, Mohamed Rezk, Stefania Benetti, Markus van Ackeren i Olivier Collignon. "Hierarchical Brain Network for Face and Voice Integration of Emotion Expression". Cerebral Cortex 29, nr 9 (1.10.2018): 3590–605. http://dx.doi.org/10.1093/cercor/bhy240.
Pełny tekst źródłaLee, Ki-Seung. "Voice Conversion Using a Perceptual Criterion". Applied Sciences 10, nr 8 (22.04.2020): 2884. http://dx.doi.org/10.3390/app10082884.
Pełny tekst źródłaSinghal, Abhishek, i Devendra Kumar Sharma. "Estimation of Accuracy in Human Gender Identification and Recall Values Based on Voice Signals Using Different Classifiers". Journal of Engineering 2022 (15.12.2022): 1–9. http://dx.doi.org/10.1155/2022/9291099.
Pełny tekst źródłaZafar, Shakeel, Imran Fareed Nizami, Mobeen Ur Rehman, Muhammad Majid i Jihyoung Ryu. "NISQE: Non-Intrusive Speech Quality Evaluator Based on Natural Statistics of Mean Subtracted Contrast Normalized Coefficients of Spectrogram". Sensors 23, nr 12 (16.06.2023): 5652. http://dx.doi.org/10.3390/s23125652.
Pełny tekst źródłaShirataki, Jun, i Manabu Ishihara. "Perception of Intermittently Eliminated Speech Waves (Auditory Sense Characteristics in Case of Having Eliminated the Voice Signals at a Specified Interval)". Journal of Robotics and Mechatronics 6, nr 1 (20.02.1994): 87–91. http://dx.doi.org/10.20965/jrm.1994.p0087.
Pełny tekst źródłaAbdallah, Hanaa A., i Souham Meshoul. "A Multilayered Audio Signal Encryption Approach for Secure Voice Communication". Electronics 12, nr 1 (20.12.2022): 2. http://dx.doi.org/10.3390/electronics12010002.
Pełny tekst źródłaIngrisano, Dennis R.-S., Cecyle K. Perry i Kairsten R. Jepson. "Environmental Noise". American Journal of Speech-Language Pathology 7, nr 1 (luty 1998): 91–96. http://dx.doi.org/10.1044/1058-0360.0701.91.
Pełny tekst źródłaSulistyawan, V. N., S. E. Widhira, A. Fatin i N. A. Salim. "Signal acquisition system based on wireless transmission for environmental sound monitoring system". IOP Conference Series: Earth and Environmental Science 969, nr 1 (1.01.2022): 012015. http://dx.doi.org/10.1088/1755-1315/969/1/012015.
Pełny tekst źródłaHillenbrand, James. "A Methodological Study of Perturbation and Additive Noise in Synthetically Generated Voice Signals". Journal of Speech, Language, and Hearing Research 30, nr 4 (grudzień 1987): 448–61. http://dx.doi.org/10.1044/jshr.3004.448.
Pełny tekst źródłaNaresh, B., S. Rambabu i D. Khalandar Basha. "ARM Controller and EEG based Drowsiness Tracking and Controlling during Driving". International Journal of Reconfigurable and Embedded Systems (IJRES) 6, nr 3 (28.05.2018): 127. http://dx.doi.org/10.11591/ijres.v6.i3.pp127-132.
Pełny tekst źródłaLengagne, T., J. Lauga i T. Aubin. "Intra-syllabic acoustic signatures used by the king penguin in parent-chick recognition: an experimental approach". Journal of Experimental Biology 204, nr 4 (15.02.2001): 663–72. http://dx.doi.org/10.1242/jeb.204.4.663.
Pełny tekst źródłaWang, Da Hu, Qie Qie Zhang i Yi Fan Sun. "Design of Wireless Voice Communication System in Underground Coal Mine Based on ZigBee". Applied Mechanics and Materials 548-549 (kwiecień 2014): 1402–6. http://dx.doi.org/10.4028/www.scientific.net/amm.548-549.1402.
Pełny tekst źródłaSadou, Jean‐Claude B. "Device for the processing of voice signals". Journal of the Acoustical Society of America 79, nr 2 (luty 1986): 590–91. http://dx.doi.org/10.1121/1.393495.
Pełny tekst źródłaWang, JingHui, i YuanChao Zhao. "Voice Prediction Based On All-Poles Signals". Procedia Engineering 29 (2012): 1506–10. http://dx.doi.org/10.1016/j.proeng.2012.01.163.
Pełny tekst źródłaChe Kassim, Farah Nazlia, Vikneswaran Vijean, Zulkapli Abdullah, Hariharan Muthusamy i Rokiah Abdullah. "OPTIMIZATION OF DUAL-TREE COMPLEX WAVELET PACKET BASED ENTROPY FEATURES FOR VOICE PATHOLOGIES DETECTION". Jurnal Teknologi 82, nr 6 (21.10.2020): 21–28. http://dx.doi.org/10.11113/jurnalteknologi.v82.14748.
Pełny tekst źródłaPutri, Farika, Wahyu Caesarendra, Elta Diah Pamanasari, Mochammad Ariyanto i Joga D. Setiawan. "Parkinson Disease Detection Based on Voice and EMG Pattern Classification Method for Indonesian Case Study". Journal of Energy, Mechanical, Material and Manufacturing Engineering 3, nr 2 (31.12.2018): 87. http://dx.doi.org/10.22219/jemmme.v3i2.6977.
Pełny tekst źródłaDimolitsas, S. "Characterization of low-rate digital voice coder performance with non-voice signals". Speech Communication 12, nr 2 (czerwiec 1993): 135–44. http://dx.doi.org/10.1016/s0167-6393(05)80005-6.
Pełny tekst źródła