Gotowa bibliografia na temat „Visible Photoluminescence”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Visible Photoluminescence”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Visible Photoluminescence"
Nešpůrek, Stanislav, František Schauer i Andrey Kadashchuk. "Visible Photoluminescence in Polysilanes". Monatshefte fuer Chemie/Chemical Monthly 132, nr 1 (30.01.2001): 159–68. http://dx.doi.org/10.1007/s007060170155.
Pełny tekst źródłaNishitani, H., H. Nakata, T. Ohyama i Yasufumi Fujiwara. "Visible Photoluminescence of Porous Silicon". Materials Science Forum 117-118 (styczeń 1993): 513–18. http://dx.doi.org/10.4028/www.scientific.net/msf.117-118.513.
Pełny tekst źródłaGasanly, N. M., i K. Goksen. "Visible photoluminescence from chain Tl4In3GaSe8semiconductor". Journal of Physics: Condensed Matter 18, nr 26 (19.06.2006): 6057–64. http://dx.doi.org/10.1088/0953-8984/18/26/023.
Pełny tekst źródłaSchmuki, P., D. J. Lockwood, H. J. Labbé i J. W. Fraser. "Visible photoluminescence from porous GaAs". Applied Physics Letters 69, nr 11 (9.09.1996): 1620–22. http://dx.doi.org/10.1063/1.117050.
Pełny tekst źródłaMurayama, Kazuro, Seiichi Miyazaki i Masataka Hirose. "Visible Photoluminescence from Porous Silicon". Japanese Journal of Applied Physics 31, Part 2, No. 9B (15.09.1992): L1358—L1361. http://dx.doi.org/10.1143/jjap.31.l1358.
Pełny tekst źródłaMeneses-Franco, Ariel, Marcelo Campos-Vallette, Sergio Vásquez i Eduardo Soto-Bustamante. "Er-Doped Nanostructured BaTiO3 for NIR to Visible Upconversion". Materials 11, nr 10 (12.10.2018): 1950. http://dx.doi.org/10.3390/ma11101950.
Pełny tekst źródłaPizani, P. S., H. C. Basso, F. Lanciotti, T. M. Boschi, F. M. Pontes, E. Longo i E. R. Leite. "Visible photoluminescence in amorphous ABO3 perovskites". Applied Physics Letters 81, nr 2 (8.07.2002): 253–55. http://dx.doi.org/10.1063/1.1494464.
Pełny tekst źródłaAksenov, Igor, i Katsuaki Sato. "Visible photoluminescence of Zn‐doped CuAlS2". Applied Physics Letters 61, nr 9 (31.08.1992): 1063–65. http://dx.doi.org/10.1063/1.107717.
Pełny tekst źródłaKawaguchi, Toshihiko, i Shin Miyazima. "Visible Photoluminescence from Si Microcrystalline Particles*". Japanese Journal of Applied Physics 32, Part 2, No. 2B (15.02.1993): L215—L217. http://dx.doi.org/10.1143/jjap.32.l215.
Pełny tekst źródłaZanatta, A. R., M. J. V. Bell i L. A. O. Nunes. "Visible photoluminescence fromEr3+ions ina−SiNalloys". Physical Review B 59, nr 15 (15.04.1999): 10091–98. http://dx.doi.org/10.1103/physrevb.59.10091.
Pełny tekst źródłaRozprawy doktorskie na temat "Visible Photoluminescence"
Lehto, V. P., N. Shibata, A. N. Nazarov, V. S. Lysenko, S. Muto, J. Salonen, A. V. Vasin i Yukari Ishikawa. "Color control of white photoluminescence from carbon-incorporated silicon oxide". AIP, 2008. http://hdl.handle.net/2237/20780.
Pełny tekst źródłaWerwa, Eric 1970. "The role of quantum confinement effects in the visible photoluminescence from silicon nanoparticles". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43547.
Pełny tekst źródłaLefez, Benoît. "Caractérisation d'oxydes de cuivre par photoluminescence". Rouen, 1991. http://www.theses.fr/1991ROUES047.
Pełny tekst źródłaCates, Ezra Lucas Hoyt. "Development of visible-to-ultraviolet upconversion phosphors for light-activated antimicrobial surfaces". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47619.
Pełny tekst źródłaChernikov, Alexey [Verfasser], i Martin [Akademischer Betreuer] Koch. "Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range / Alexey A. Chernikov. Betreuer: Martin Koch". Marburg : Philipps-Universität Marburg, 2012. http://d-nb.info/1021498890/34.
Pełny tekst źródłaMichalsky, Tom, Marcel Wille, Christof P. Dietrich, Robert Röder, Carsten Ronning, Rüdiger Schmidt-Grund i Marius Grundmann. "Phonon-assisted lasing in ZnO microwires at room temperature". American Institute of Physics, 2014. https://ul.qucosa.de/id/qucosa%3A31211.
Pełny tekst źródłaBurbaev, T. M., D. S. Kozirev, D. N. Lobanov, A. V. Novikov, N. N. Sibeldin i M. L. Skorikov. "Four-Particle Recombination Luminescence of Electron-Hole Liquid and Biexcitons in SiGe Quasi-Ttwo-Dimensional Layers of Silicon Heterostructures in the Visible Spectrum". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34876.
Pełny tekst źródłaTyombo, Nolukholo. "Synthesis and Luminescence of Zinc Oxide Nanorods-Blended Thiopheno-Organosilicon Polymers". University of the Western Cape, 2017. http://hdl.handle.net/11394/6230.
Pełny tekst źródłaThe increasing cost of fossil fuel energy production and its implication in environmental pollution and climate change created high demand for alternative and renewable sources of energy. This has led to great interest in research in the field of photovoltaic or solar cells Due to the abundance of sunlight, the technology is sustainable, non-polluting and can be implemented at places where power demand is needed, for example in rural areas. Solar cell devices that have been commercialized are currently based on silicon technology, involving the use of monocrystalline, polycrystalline and amorphous silicon. Although they produce highly efficient solar cells, the cost of Si solar cells is too high. Second generation solar cell materials such as cadmium telluride and third generation materials such as perovskites and organic polymers have been receiving much attention recently. However, they lack the efficiency of Si solar cells. This research proposes the development of high energy conservation photovoltaic cells from novel low-cost organosilicon polymers. The aim was to develop novel highly branched organosilane polymers such as poly(3-hexythiophene), polydi(thien-2-yl)dimethylsilane, poly(3-hexyl- [2,2'] bithiophenyl-5-yl)-dimethyl-thiophen-2yl-silane) as electron donors along with zinc oxide nanorod as the electron acceptor which were able to bring the efficiency of the resultant photovoltaic cell close to that of current Si solar cell.
2021-08-31
Charvet, Stéphane. "Étude de la croissance et des propriétés d'émission dans le visible de nanograins de silicium dans une matrice de silice amorphe : analyse quantitative par ellipsométrie spectroscopique". Phd thesis, Université de Caen, 1999. http://tel.archives-ouvertes.fr/tel-00004183.
Pełny tekst źródłaGodard, Marie. "Les carbones amorphes hydrogénés : observations, synthèse et caractérisation en laboratoire de poussières interstellaires". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00635907.
Pełny tekst źródłaCzęści książek na temat "Visible Photoluminescence"
Nešpůrek, Stanislav, František Schauer i Andrey Kadashchuk. "Visible Photoluminescence in Polysilanes". W Molecular Materials and Functional Polymers, 159–68. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6276-7_16.
Pełny tekst źródłaRekha, S., i E. I. Anila. "Photoluminescence Investigations of UV, Near UV, and Visible Light Excited CaS:Eu Nanophosphors". W Nanostructured Smart Materials, 13–28. First edition.: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003130468-2.
Pełny tekst źródłaNakajima, Atsushi, Minoru Fujii, Shinji Hayashi i Koji Kaya. "Visible and Infrared Photoluminescence from Deposited Germanium-Oxide Clusters and from Ge Nanocrystals". W Frontiers of Nano-Optoelectronic Systems, 303–17. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0890-7_20.
Pełny tekst źródłaYokoyama, H., M. Fujii, M. Sugimoto, H. Iwata, K. Onabe i T. Suzuki. "Time-Resolved Photoluminescence Spectroscopy of GaAs Quantum Wells with 1W Picosecond Light Pulses Generated from a Visible Diode Laser". W Ultrafast Phenomena VI, 324–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_91.
Pełny tekst źródłaKrishnamoorthy, Sivakumar, i Dharani M. "Photocatalytic Activity of ZnO Nanoparticles on the Degradation of Organic Dyes Under Solar Light". W Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 514–36. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch023.
Pełny tekst źródłaKrishnamoorthy, Sivakumar, i Dharani M. "Photocatalytic Activity of ZnO Nanoparticles on the Degradation of Organic Dyes Under Solar Light". W Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry, 409–31. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1241-8.ch019.
Pełny tekst źródłaPazhamalai, Parthiban, Karthikeyan Krishnamoorthy i Sang-Jae Kim. "Energy Storage Properties of Topochemically Synthesized Blue TiO2 Nanostructures in Aqueous and Organic Electrolyte". W 21st Century Nanostructured Materials – Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedical, and Agriculture [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102186.
Pełny tekst źródła"Green and One-Pot Synthesis of Mint Derived Carbon Quantum Dots for Metal Ion Sensing". W Materials Research Foundations, 81–94. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901250-3.
Pełny tekst źródłaKouass, Salah, Hassouna Dhaouadi, Abdelhak Othmani i Fathi Touati. "Characterization, Photoelectric Properties, Electrochemical Performances and Photocatalytic Activity of the Fe2O3/TiO2 Heteronanostructure". W Electrocatalysis [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98759.
Pełny tekst źródłaMOTOHIRO, TOMOYOSHI, YASUHIKO TAKEDA, SHI-AKI HYODO, TATSUMI HIOKI i SHOJI NODA. "AN OLIGOSILANE BRIDGE MODEL: NANOCOMPOSITE NATURE OF THE ORIGIN OF THE INTENSE VISIBLE PHOTOLUMINESCENCE OF POROUS SILICON". W Porous Silicon, 99–131. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812812995_0006.
Pełny tekst źródłaStreszczenia konferencji na temat "Visible Photoluminescence"
Zlateva, G., M. Mileva i N. Popdimitrova. "Visible Photoluminescence of Solid State Quercetin and Rutin". W SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733572.
Pełny tekst źródłaHuang, Lijuan, Lei Wang i Jun Du. "Growth and Visible Photoluminescence Properties from Gold Silicide Nanoparticles". W 2010 Symposium on Photonics and Optoelectronics (SOPO 2010). IEEE, 2010. http://dx.doi.org/10.1109/sopo.2010.5504406.
Pełny tekst źródłaAKIYAMA, Koji, Akifumi OGIWARA i Hisahito OGAWA. "Visible Photoluminescence of Highly Photoconductive Hydrogenated Amorphous Silicon Film". W 1993 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1993. http://dx.doi.org/10.7567/ssdm.1993.c-5-1.
Pełny tekst źródłaLee, Chang-Won, Henry O. Everitt, John M. Zavada i Andrew J. Steckl. "Temperature dependent visible photoluminescence of Eu-doped GaN on silicon". W Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.wff4.
Pełny tekst źródłaAfinogenov, Boris I., Anton S. Medvedev, Ilya M. Antropov, Nikita R. Filatov, Anton N. Sofronov, EunHee Jeang, Sangwoo Bae i in. "Visible upconversion photoluminescence of bulk silicon and mesoscale silicon nanoparticles". W Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, redaktorzy Wounjhang Park, André-Jean Attias i Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2570415.
Pełny tekst źródłaKawabe, Yutaka, Akio Yamanaka, Eiichi Hanamura, Tsuyoshi Kimura, Yoshinori Tokura, Yoshihiro Takiguchi i Hirofumi Kan. "Ultraviolet and visible photoluminescence from aluminate crystals with perovskite structure". W International Symposium on Optical Science and Technology, redaktorzy Alexander J. Marker III i Eugene G. Arthurs. SPIE, 2000. http://dx.doi.org/10.1117/12.405278.
Pełny tekst źródłaBryan, R. P., R. P. Schneider, J. A. Lott i G. R. Olbright. "Visible vertical-cavity surface-emitting lasers". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fw2.
Pełny tekst źródłaMei, Jiaxin, Yunjun Rui, Ling Yang, Jun Xu, Zhongyuan Ma, Da Zhu, Xinfan Huang i Kunji Chen. "Visible photoluminescence originated from various mechanisms during step-by-step annealing". W SPIE Proceedings, redaktorzy Junhao Chu, Zongsheng Lai, Lianwei Wang i Shaohui Xu. SPIE, 2004. http://dx.doi.org/10.1117/12.608168.
Pełny tekst źródłaKuzmin, A., N. Mironova-Ulmane i S. Ronchin. "Origin of visible photoluminescence in NiO and NicMg1-cO single crystals". W SPIE Proceedings, redaktorzy Andris Krumins, Donats Millers, Inta Muzikante, Andris Sternbergs i Vismants Zauls. SPIE, 2003. http://dx.doi.org/10.1117/12.515705.
Pełny tekst źródłaQue, R., L. Houel-Renault, M. Temagoult, M. Lancry, K. Kalli i B. Poumellec. "Photoluminescence Creation in CYTOP Optical Fiber by Femtosecond Laser Direct Writing". W Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/bgppm.2022.bm3a.3.
Pełny tekst źródła