Gotowa bibliografia na temat „Visible light wireless communications”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Visible light wireless communications”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Visible light wireless communications"

1

Almadani, Yousef, David Plets, Sander Bastiaens, et al. "Visible Light Communications for Industrial Applications—Challenges and Potentials." Electronics 9, no. 12 (2020): 2157. http://dx.doi.org/10.3390/electronics9122157.

Pełny tekst źródła
Streszczenie:
Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential.
Style APA, Harvard, Vancouver, ISO itp.
2

Manousiadis, Pavlos P., Kou Yoshida, Graham A. Turnbull, and Ifor D. W. Samuel. "Organic semiconductors for visible light communications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2169 (2020): 20190186. http://dx.doi.org/10.1098/rsta.2019.0186.

Pełny tekst źródła
Streszczenie:
Organic semiconductors are an important class of optoelectronic material that are widely studied because of the scope for tuning their properties by tuning their chemical structure, and simple fabrication to make flexible films and devices. Although most effort has focused on developing displays and lighting from these materials, their distinctive properties also make them of interest for visible light communications (VLCs). This article explains how their properties make them suitable for VLC and reviews the main uses that have been explored. On the transmitter side, record white VLC communication has been achieved by using organic semiconductors as colour converters, while direct modulation of organic light-emitting diodes is also possible and could be of interest for display-to-display communication. On the receiver side, organic solar cells can be used to harvest power and data simultaneously, and fluorescent antennas enable fast and sensitive receivers with large field of view. This article is part of the theme issue ‘Optical wireless communication’.
Style APA, Harvard, Vancouver, ISO itp.
3

Lee, Daechun, Kyungmook Choi, Ki-Doo Kim, and Youngil Park. "Visible light wireless communications based on predistorted OFDM." Optics Communications 285, no. 7 (2012): 1767–70. http://dx.doi.org/10.1016/j.optcom.2011.12.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Miramirkhani, Farshad, and Murat Uysal. "Channel modelling for indoor visible light communications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2169 (2020): 20190187. http://dx.doi.org/10.1098/rsta.2019.0187.

Pełny tekst źródła
Streszczenie:
Visible light communication (VLC) allows the dual use of light-emitting diodes (LEDs) for wireless communication purposes in addition to their primary purpose of illumination. As in any other communication system, realistic channel modelling is a key for VLC system design, analysis and testing. In this paper, we present a comprehensive survey of indoor VLC channel models. In order to set the background, we start with an overview of infrared (IR) channel modelling, which has received much attention in the past, and highlight the differences between visible and IR optical bands. In the light of these, we present a comparative discussion of existing VLC channel modelling studies and point out the relevant advantages and disadvantages. Then, we provide a detailed description of a site-specific channel modelling approach based on non-sequential ray tracing that precisely captures the optical propagation characteristics of a given indoor environment. We further present channel models for representative deployment scenarios developed through this approach that were adopted by the Institute of Electrical and Electronics Engineering (IEEE) as reference channel models. Finally, we consider mobile VLC scenarios and investigate the effect of receiver location and rotation for a mobile indoor user. This article is part of the theme issue ‘Optical wireless communication’.
Style APA, Harvard, Vancouver, ISO itp.
5

Kinny, Tyran, Franklin Puthuva, Ashore Komban, and Dipti Belekar. "DATA COMMUNICATION USING VISIBLE LIGHT." International Journal of Students' Research in Technology & Management 3, no. 5 (2015): 358–62. http://dx.doi.org/10.18510/ijsrtm.2015.354.

Pełny tekst źródła
Streszczenie:
Visible Light Communication (VLC) using a Light Fidelity system, as proposed by a German physicist—Harald Haas, provides transmission of data through illumination by sending data through an LED light source that varies in intensity that can be controlled and adjusted such that it appears as normal light to the naked human eye. Here the property of persistence of vision of the human eye is exploited for additional application of a free, sustainable and green source that can be used for wireless communication at very fast data rates. This paper focuses on developing a low cost Li-Fi based system and analyses its performance with respect to existing wireless technology. Wi-Fi is great for general wireless coverage within buildings, whereas Li-Fi is ideal for high density wireless data coverage in confined area and for relieving radio interference issues. Li-Fi based system provides better bandwidth, efficiency, availability and security than Wi-Fi and has already achieved higher data rates. By leveraging the low-cost nature of LEDs and lighting units there are many opportunities to exploit this medium, from public internet access through day-to-day light sources which have their primary purpose of only emitting light. This project envisions a future where data for communication devices will be transmitted through the visible spectrum thus de-clogging the currently overused RF spectrum.
Style APA, Harvard, Vancouver, ISO itp.
6

Ahmed, Iqrar, Heikki Karvonen, Timo Kumpuniemi, and Marcos Katz. "Wireless Communications for the Hospital of the Future: Requirements, Challenges and Solutions." International Journal of Wireless Information Networks 27, no. 1 (2019): 4–17. http://dx.doi.org/10.1007/s10776-019-00468-1.

Pełny tekst źródła
Streszczenie:
Abstract In this conceptual paper, we discuss the concept of hospital of the future (HoF) and the requirements for its wireless connectivity. The HoF will be mostly wireless, connecting patients, healthcare professionals, sensors, computers and medical devices. Spaces of the HoF are first characterized in terms of communicational performance requirements. In order to fulfil the stringent requirements of future healthcare scenarios, such as enhanced performance, security, safety, privacy, and spectrum usage, we propose a flexible hybrid optical-radio wireless network to provide efficient, high-performance wireless connectivity for the HoF. We introduce the concept of connected HoF exploiting reconfigurable hybrid optical-radio networks. Such a network can be dynamically reconfigured to transmit and receive optical, radio or both signals, depending on the requirements of the application. We envisage that HoF will consist of numerous communication devices and hybrid optical-radio access points to transmit data using radio waves and visible light. Light-based communications exploit the idea of visible light communications (VLC), where solid-state luminaries, white light-emitting diodes (LEDs) provide both room illumination as well as optical wireless communications (OWC). The hybrid radio-optical communication system can be used in principle in every scenario of the HoF. In addition to the hybrid access, we also propose a reconfigurable optical-radio communications wireless body area network (WBAN), extending the conventional WBAN to more generic and highly flexible solution. As the radio spectrum is becoming more and more congested, hybrid wireless network approach is an attractive solution to use the spectrum more efficiently. The concept of HoF aims at enhancing healthcare while using hospital resources efficiently. The enormous surge in novel communication technologies such as internet of things (IoT) sensors and wireless medical communications devices could be undermined by spectral congestion, security, safety and privacy issues of radio networks. The considered solution, combining optical and radio transmission network could increase spectral efficiency, enhancing privacy while reducing patient exposure to radio frequency (RF). Parallel radio-optical communications can enhance reliability and security. We also discuss possible operation scenarios and applications that can be introduced in HoF as well as outline potential challenges.
Style APA, Harvard, Vancouver, ISO itp.
7

Yu, Tai-Cheng, Wei-Ta Huang, Wei-Bin Lee, Chi-Wai Chow, Shu-Wei Chang, and Hao-Chung Kuo. "Visible Light Communication System Technology Review: Devices, Architectures, and Applications." Crystals 11, no. 9 (2021): 1098. http://dx.doi.org/10.3390/cryst11091098.

Pełny tekst źródła
Streszczenie:
Visible light communication (VLC) is an advanced, highly developed optical wireless communication (OWC) technology that can simultaneously provide lighting and high-speed wireless data transmission. A VLC system has several key advantages: ultra-high data rate, secure communication channels, and a lack of interference from electromagnetic (EM) waves, which enable a wide range of applications. Light-emitting diodes (LEDs) have been considered the optimal choice for VLC systems since they can provide excellent illumination performance. However, the quantum confinement Stark effect (QCSE), crystal orientation, carrier lifetime, and recombination factor will influence the modulation bandwidth, and the transmission performance is severely limited. To solve the insufficient modulation bandwidth, micro-LEDs (μ-LEDs) and laser diodes (LDs) are considered as new ideal light sources. Additionally, the development of modulation technology has dramatically increased the transmission capacity of the system. The performance of the VLC system is briefly discussed in this review article, as well as some of its prospective applications in the realms of the industrial Internet of Things (IoT), vehicle communications, and underwater wireless network applications.
Style APA, Harvard, Vancouver, ISO itp.
8

Chaabawi, N. J. AL, H. Al Furiji, A. Dahir Alramadan, and M. AL Shakban. "Text Transmission Using Visible Light Communication." International Journal of Electrical and Electronics Research 10, no. 3 (2022): 627–31. http://dx.doi.org/10.37391/ijeer.100335.

Pełny tekst źródła
Streszczenie:
Recently, WiFi wireless technology was used to send data by using radio signals, this paper will focus on LiFi technology which is an optical wireless networking technology that uses LEDs for the transmission of data using light-emitting diodes. LiFi production models were capable to transmit 150 megabits per second (Mbps). Visible light communication (VLC) is a facile method to overcome the spectrum crisis of radiofrequency. Light Fidelity (Li-Fi) is the wireless data transfer using LED. In this study LEDs have been used to transfer text between two computers using a processing software method, coding the Arduino Mega board by the Arduino software in both sender and receiver is observed. The system has worked better for a white LED than the red LED and IR LED. Experiments have shown that white is the most efficient color for transferring texts from one computer to another.
Style APA, Harvard, Vancouver, ISO itp.
9

Raj, Hritik, Charu Mitra, Gauri Shankar, Chandan Kumar, and Harsh Raj. "Lifi wireless communication." International Journal of Innovative Research in Physics 2, no. 2 (2021): 15–18. http://dx.doi.org/10.15864/ijiip.2203.

Pełny tekst źródła
Streszczenie:
Li-Fi stands for Light-fidelity. The technology was very new and proposed by the German Physicist Harald Hass in 2011. Li-Fi basically aims to replace Wi-Fi by using light to transmit internet signals. It works on the principle of visible light communication I.e .use of visible light for communication. Though Li-Fi is a system that is capable of transmitting data at high speeds over the visible light, ultraviolet and infrared spectrum but in its present state only LED lambs can be used. It consists of a light bulb which is used as an emitter and a photo diode as a receiver. Li-Fi provides transmission of data through an LED light bulb that varies in intensity faster than human eye can follow .It is ideal for high density wireless data coverage in confined area where there is no obstacle. It provides better bandwidth efficiency, availability& security than wifi. The technology is actively being developed by several organizations across the globe. In this project we tried to show a basic prototype of wireless data transmission using LiFi and what future it holds within itself for the new generation needs
Style APA, Harvard, Vancouver, ISO itp.
10

Zadobrischi, Eduard. "The Concept regarding Vehicular Communications Based on Visible Light Communication and the IoT." Electronics 12, no. 6 (2023): 1359. http://dx.doi.org/10.3390/electronics12061359.

Pełny tekst źródła
Streszczenie:
The most controversial technology—visible light communication—is becoming increasingly promising in the field of wireless networks, being ideal for many indoor and outdoor applications. This article proposes VLC methods and architectures capable of providing high security in vehicles and in their communications with the environment or other cars in traffic. The architectures proposed involve the inclusion of ambient lighting equipment and systems and indoor and outdoor lighting systems, such as headlights, traffic lights, and stoplights. Securing data within vehicular networks and validating them through multiple layers of filtering at the level of the physical PHY layer would drastically strengthen the position of VLC. They are the only source of information through which direct contact is maintained with the other entities in the network. The evaluations and proposals presented here are highly viable and deserve future consideration in light of the results obtained in the practical steps carried out in the research process.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii