Gotowa bibliografia na temat „Visible-light”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Visible-light”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Visible-light"
Mishra, Akassh A., i Neelesh S. Salian. "Internet using Visible Light Communication". International Journal of Engineering and Technology 3, nr 5 (2011): 577–81. http://dx.doi.org/10.7763/ijet.2011.v3.288.
Pełny tekst źródłaSurve, Himanshu. "Visible Light Communication". International Journal for Research in Applied Science and Engineering Technology 7, nr 4 (30.04.2019): 1820–22. http://dx.doi.org/10.22214/ijraset.2019.4330.
Pełny tekst źródłaHaruyama, Shinichiro. "Visible Light Communication". Journal of The Institute of Image Information and Television Engineers 64, nr 9 (2010): 1337–38. http://dx.doi.org/10.3169/itej.64.1337.
Pełny tekst źródłaHARUYAMA, Shinichiro. "Visible Light Communication". Journal of the Society of Mechanical Engineers 107, nr 1030 (2004): 710–11. http://dx.doi.org/10.1299/jsmemag.107.1030_710.
Pełny tekst źródłaStewart, Seá M. "TERAHERTZING VISIBLE LIGHT". American Journal of Physics 79, nr 8 (sierpień 2011): 797. http://dx.doi.org/10.1119/1.3599642.
Pełny tekst źródłaRueggeberg, Fred. "VISIBLE LIGHT CURING". Journal of Esthetic and Restorative Dentistry 17, nr 4 (lipiec 2005): 200–201. http://dx.doi.org/10.1111/j.1708-8240.2005.tb00115.x.
Pełny tekst źródłaBruzell, Ellen M. "VISIBLE LIGHT CURING". Journal of Esthetic and Restorative Dentistry 17, nr 5 (wrzesień 2005): 273–74. http://dx.doi.org/10.1111/j.1708-8240.2005.tb00129.x.
Pełny tekst źródłaSWIFT JR., EDWARD J. "Visible Light-Curing". Journal of Esthetic and Restorative Dentistry 23, nr 3 (9.05.2011): 191–96. http://dx.doi.org/10.1111/j.1708-8240.2011.00441.x.
Pełny tekst źródłaCarver, Antonia. "In visible light". Third Text 11, nr 41 (grudzień 1997): 89–92. http://dx.doi.org/10.1080/09528829708576705.
Pełny tekst źródłaGutiérrez, Juan Felipe, i Jesús María Quintero. "Visible Light Communication". Revista Ontare 10 (5.12.2022): 26. http://dx.doi.org/10.21158/23823399.v10.n1.2022.3538.
Pełny tekst źródłaRozprawy doktorskie na temat "Visible-light"
Hussein, Ahmed Taha. "Visible light communication system". Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15894/.
Pełny tekst źródłaSoleiman, Andreas. "Battery-free Visible Light Sensing". Thesis, Uppsala universitet, Avdelningen för datorteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381370.
Pełny tekst źródłaBattery-free Visible Light Sensing
MobiCom: G: Battery-free Visible Light Sensing
Raval, Manan. "Nanophotonic visible light phased arrays". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/109686.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 81-85).
Previously demonstrated integrated optical phased arrays have primarily been implemented in silicon-based platforms and have therefore been limited to operation at infrared wavelengths, where silicon provides low-loss transmission. Developing integrated optical phased arrays for visible wavelengths would enable the exploration of new applications for this technology, such as autostereoscopic displays and neuronal targeting for optogenetics. The work presented in this thesis involves the development of visible light integrated optical phased array components and systems with a focus on autostereoscopic image projection applications. Practical 3D microdisplay applications will require (1) large-aperture phased array systems for diffraction minimization, (2) integrated phase modulation for implementing dynamically reconfigurable phased array antenna elements, and (3) a phased array system architecture for accurately encoding the light field of virtual objects. Integrated photonic architectures for all three aforementioned goals are investigated in this thesis. With respect to the first goal, a 1x1 mm2 aperture visible light phased array with a near diffraction limited far-field spot size is demonstrated. With respect to the second goal, the design of an integrated phase modulator based on the electro-optic tuning of a nematic liquid crystal waveguide cladding layer is developed and a near-x phase shift is demonstrated in a fabricated device. Finally, an autostereoscopic image projection system comprised of multiple tiled phased arrays configured to project a virtual image with parallax in one dimension within an 8.58° field of view is demonstrated.
by Manan Raval.
S.M.
Ferreira, Ricardo Xavier da Graça. "Gallium nitride light-emitting diode enabled visible light communications". Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=28805.
Pełny tekst źródłaGuo, Shangyuan. "Device Pairing Using Visible Light Communications". Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-21601.
Pełny tekst źródłaBoubezari, Rayana. "Smartphone to smartphone visible light communications". Thesis, Northumbria University, 2018. http://nrl.northumbria.ac.uk/36194/.
Pełny tekst źródłaAzhar, Ahmad Helmi. "Visible light commuinications using optical OFDM". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9e4c363b-27ba-4e47-8660-39f4e0a077f8.
Pełny tekst źródłaXia, Zhonghua. "Gold(I) Catalysis Under Visible Light". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS606.
Pełny tekst źródłaThis thesis has focused on the study of a dual catalytic process involving gold catalysis and photocatalysis. We aimed to synthesize benzofuran derivatives from o-alkynylphenols and aryl diazonium salts or iodoalkynes in the presence of a catalytic mixture of a gold(I) complex and a photocatalyst under visible light irradiation. Firstly, we present a novel dual photoredox/gold catalysis process by arylative cyclization of o-alkynylphenols with aryldiazonium salts. This reaction occurs smoothly at room temperature in the absence of base and/or additives and offers an efficient approach to heterocyclic scaffolds. The reaction is proposed to proceed through a photoredox-promoted generation of a vinylgold(III) intermediate, formed by addition of the aryl radical to the gold catalyst and modulation of the oxidation state by the photocatalyst, which undergo reductive elimination to provide the heterocyclic coupling adduct. Later, we developed a new method for the synthesis of valuable alkynyl benzofuran derivatives devised from o-alkynylphenols and iodoalkynes in the presence of a catalytic mixture of Au(I) and Ir(III) under blue LED irradiation. Under visible light irradiation, the triplet excited state of the vinylgold(I) intermediate and the alkynyl iodide partner readily engaged in a oxidative addition–trans/cis isomerization sequence, deliver Csp2-Csp cross coupling products after reductive elimination. An energy transfer event rather than a redox pathway was demonstrated by the mechanistic and modeling studies. This dual gold/photo catalytic process provides a novel mode of activation in gold homogenous catalysis
Chen, Xi. "Noble metal photocatalysts under visible light and UV light irradiation". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/47008/1/Xi_Chen_Thesis.pdf.
Pełny tekst źródłaChen, Cheng. "Downlink system characterisation in LiFi Attocell networks". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25420.
Pełny tekst źródłaKsiążki na temat "Visible-light"
Visible light. Lantzville, B.C: Oolichan Books, 1993.
Znajdź pełny tekst źródłaLesy, Michael. Visible light. New York, N.Y: Times Books, 1985.
Znajdź pełny tekst źródłaCherryh, C. J. Visible light. London: Methuen, 1988.
Znajdź pełny tekst źródłaArnon, Shlomi, red. Visible Light Communication. Cambridge: Cambridge University Press, 2015. http://dx.doi.org/10.1017/cbo9781107447981.
Pełny tekst źródłaWang, Zhaocheng, Qi Wang, Wei Huang i Zhengyuan Xu, red. Visible Light Communications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119331865.
Pełny tekst źródłaGhosh, Srabanti. Visible Light-Active Photocatalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527808175.
Pełny tekst źródłaGuidi, Jennifer. Jennifer Guidi: Visible light. Milan, Italy: Mousse Publishing, 2017.
Znajdź pełny tekst źródłaChi, Nan. LED-Based Visible Light Communications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56660-2.
Pełny tekst źródłaStephenson, Corey, Tehshik Yoon i David W. C. MacMillan. Visible Light Photocatalysis in Organic Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527674145.
Pełny tekst źródłaKhan, Mohammad Mansoob, Debabrata Pradhan i Youngku Sohn, red. Nanocomposites for Visible Light-induced Photocatalysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62446-4.
Pełny tekst źródłaCzęści książek na temat "Visible-light"
Rouan, Daniel. "Visible Light". W Encyclopedia of Astrobiology, 1749. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1663.
Pełny tekst źródłaRouan, Daniel. "Visible Light". W Encyclopedia of Astrobiology, 2610–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1663.
Pełny tekst źródłaGooch, Jan W. "Visible Light". W Encyclopedic Dictionary of Polymers, 800. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12618.
Pełny tekst źródłaRouan, Daniel. "Visible Light". W Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1663-3.
Pełny tekst źródłaRouan, Daniel. "Visible Light". W Encyclopedia of Astrobiology, 3197. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1663.
Pełny tekst źródłaChow, Chi-Wai, i Chien-Hung Yeh. "Visible Light Communication". W Topics in Applied Physics, 107–21. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_4.
Pełny tekst źródłaLin, Xin, i Tomokuni Matsumura. "Visible Light Communications". W Springer Handbook of Optical Networks, 1105–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16250-4_35.
Pełny tekst źródłaUdayakumar, Neetha. "Visible Light Imaging". W Imaging with Electromagnetic Spectrum, 67–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54888-8_5.
Pełny tekst źródłaGhassemlooy, Z., W. Popoola i S. Rajbhandari. "Visible Light Communications". W Optical Wireless Communications, 397–468. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315151724-8.
Pełny tekst źródłavan Bommel, Wout. "Visible Light Communication". W Encyclopedia of Color Science and Technology, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27851-8_386-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Visible-light"
YAMAZATO, Takaya. "Visible Light Beacon". W Signal Processing in Photonic Communications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/sppcom.2020.spm4i.4.
Pełny tekst źródłaHaruyama, Shinichiro. "Visible light communications". W 2010 36th European Conference and Exhibition on Optical Communication - (ECOC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ecoc.2010.5621174.
Pełny tekst źródłaSalian, Punith P., Sachidananda Prabhu, Preetham Amin, Sumanth K. Naik i M. K. Parashuram. "Visible Light Communication". W 2013 Texas Instruments India Educators' Conference (TIIEC). IEEE, 2013. http://dx.doi.org/10.1109/tiiec.2013.74.
Pełny tekst źródłaHaas, Harald. "Visible Light Communication". W Optical Fiber Communication Conference. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ofc.2015.tu2g.5.
Pełny tekst źródłaPortugheis, Jaime, i Joel Alcidio Varela MendonÇa. "Visible Light Communication". W XXIII Congresso de Iniciação Científica da Unicamp. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.19146/pibic-2015-37428.
Pełny tekst źródłaSchmid, Stefan, Josef Ziegler, Thomas R. Gross, Manuela Hitz, Afroditi Psarra, Giorgio Corbellini i Stefan Mangold. "(In)visible light communication". W ACM SIGGRAPH 2014 Emerging Technologies. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614066.2614094.
Pełny tekst źródłaJian Chen, Yang Hong, Zixiong Wang i Changyuan Yu. "Precoded visible light communications". W 2013 9th International Conference on Information, Communications & Signal Processing (ICICS). IEEE, 2013. http://dx.doi.org/10.1109/icics.2013.6782906.
Pełny tekst źródłaBorogovac, Tarik, i Thomas D. C. Little. "Laser visible light communications". W 2012 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2012. http://dx.doi.org/10.1109/phosst.2012.6280753.
Pełny tekst źródłaWang, Qing, i Marco Zuniga. "Passive visible light networks". W MobiCom '20: The 26th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3412449.3412551.
Pełny tekst źródłaFourkas, John T., i Zuleykhan Tomova. "Multicolor, visible-light nanolithography". W SPIE Advanced Lithography, redaktorzy Kafai Lai i Andreas Erdmann. SPIE, 2015. http://dx.doi.org/10.1117/12.2087107.
Pełny tekst źródłaRaporty organizacyjne na temat "Visible-light"
Holloway, Paul H. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, maj 1994. http://dx.doi.org/10.21236/ada281190.
Pełny tekst źródłaHolloway, Paul H., Kevin Jones, Robert Park, Joseph Simmons i Cammy Abeernathy. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1997. http://dx.doi.org/10.21236/ada324532.
Pełny tekst źródłaHolloway, Paul H. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1997. http://dx.doi.org/10.21236/ada327669.
Pełny tekst źródłaHolloway, Paul H. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1995. http://dx.doi.org/10.21236/ada307461.
Pełny tekst źródłaHolloway, Paul H. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, październik 1995. http://dx.doi.org/10.21236/ada307462.
Pełny tekst źródłaHolloway, Paul H. Visible Light Emitting Materials and Injection Devices. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1995. http://dx.doi.org/10.21236/ada307598.
Pełny tekst źródłaGaines, George W., i Curtis D. Weyrauch. A New Generation of Visible-Light Curing Units. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1988. http://dx.doi.org/10.21236/ada208351.
Pełny tekst źródłaBenedict, Jason. Structure and properties of visible-light absorbing homodisperse nanoparticle. Office of Scientific and Technical Information (OSTI), kwiecień 2018. http://dx.doi.org/10.2172/1431315.
Pełny tekst źródłaChuang, Steven S. C. CO2 SEQUESTRATION AND RECYCLE BY PHOTOCATALYSIS WITH VISIBLE LIGHT. Office of Scientific and Technical Information (OSTI), grudzień 1999. http://dx.doi.org/10.2172/799755.
Pełny tekst źródłaChuang, Steven S. C. CO2 SEQUESTRATION AND RECYCLE BY PHOTOCATALYSIS WITH VISIBLE LIGHT. Office of Scientific and Technical Information (OSTI), październik 2001. http://dx.doi.org/10.2172/802825.
Pełny tekst źródła