Artykuły w czasopismach na temat „Visco-plasticity Model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Visco-plasticity Model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wu, Li, Qing Jun Zuo, and Zhong Le Lu. "Study on the Constitutive Model of Visco-Elasticity-Plasticity Considering the Rheology of Rock Mass." Advanced Materials Research 639-640 (January 2013): 567–72. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.567.
Pełny tekst źródłaAuricchio, F., and R. L. Taylor. "A generalized visco-plasticity model and its algorithmic implementation." Computers & Structures 53, no. 3 (1994): 637–47. http://dx.doi.org/10.1016/0045-7949(94)90107-4.
Pełny tekst źródłaZhang, Rong Hai, Ning Yuan Zhu, and Gai Pin Cai. "Surface Effect Mechanism Analysis for Vibrational Rotary Forging." Advanced Materials Research 314-316 (August 2011): 753–58. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.753.
Pełny tekst źródłaPathrikar, Anil, Md Masiur Rahaman, and D. Roy. "A thermodynamically consistent peridynamics model for visco-plasticity and damage." Computer Methods in Applied Mechanics and Engineering 348 (May 2019): 29–63. http://dx.doi.org/10.1016/j.cma.2019.01.008.
Pełny tekst źródłaJiang, Zhi Hong, and Gai Pin Cai. "Surface Effect Preparatory Research of Vibrational Rotary Forging." Advanced Materials Research 154-155 (October 2010): 1513–17. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.1513.
Pełny tekst źródłaWang, Ru Bin, Wei Ya Xu, and Jiu Chang Zhang. "Modeling Coupled Flow-Stress-Damage during Creep Deformation." Applied Mechanics and Materials 204-208 (October 2012): 3294–98. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.3294.
Pełny tekst źródłaEkh, Magnus, Robert Lillbacka, and Kenneth Runesson. "A model framework for anisotropic damage coupled to crystal (visco)plasticity." International Journal of Plasticity 20, no. 12 (2004): 2143–59. http://dx.doi.org/10.1016/j.ijplas.2004.04.007.
Pełny tekst źródłaKarrech, A., K. Regenauer-Lieb, and T. Poulet. "A damaged visco-plasticity model for pressure and temperature sensitive geomaterials." International Journal of Engineering Science 49, no. 10 (2011): 1141–50. http://dx.doi.org/10.1016/j.ijengsci.2011.05.005.
Pełny tekst źródłaBartczak, Leszek, and Sebastian Owczarek. "Existence of solution for a nonlinear model of thermo-visco-plasticity." Mathematical Methods in the Applied Sciences 41, no. 10 (2018): 3533–46. http://dx.doi.org/10.1002/mma.4841.
Pełny tekst źródłaSuzuki, Jorge L., Maryam Naghibolhosseini, and Mohsen Zayernouri. "A General Return-Mapping Framework for Fractional Visco-Elasto-Plasticity." Fractal and Fractional 6, no. 12 (2022): 715. http://dx.doi.org/10.3390/fractalfract6120715.
Pełny tekst źródłaZhang, Cong, Zhende Zhu, Shu Zhu, et al. "Nonlinear Creep Damage Constitutive Model of Concrete Based on Fractional Calculus Theory." Materials 12, no. 9 (2019): 1505. http://dx.doi.org/10.3390/ma12091505.
Pełny tekst źródłaYang, Menghao, and Miaolin Feng. "Finite element implementation of non-unified visco-plasticity model considering static recovery." Mechanics of Time-Dependent Materials 24, no. 1 (2019): 59–72. http://dx.doi.org/10.1007/s11043-018-09406-9.
Pełny tekst źródłaEspinosa, H. D., H.-C. Lu, P. D. Zavattieri, and S. Dwivedi. "A 3-D Finite Deformation Anisotropic Visco-Plasticity Model for Fiber Composites." Journal of Composite Materials 35, no. 5 (2001): 369–410. http://dx.doi.org/10.1177/002199801772662154.
Pełny tekst źródłaRöger, Matthias, and Ben Schweizer. "Strain gradient visco-plasticity with dislocation densities contributing to the energy." Mathematical Models and Methods in Applied Sciences 27, no. 14 (2017): 2595–629. http://dx.doi.org/10.1142/s0218202517500531.
Pełny tekst źródłaPipard, Jean Marc, Tudor Balan, Farid Abed-Meraim, and Xavier Lemoine. "Physically-Motivated Elasto-Visco-Plastic Model for the Large Strain-Rate Behavior of Steels." Key Engineering Materials 554-557 (June 2013): 1164–73. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1164.
Pełny tekst źródłaSun, Ji Quan, Sheng Yang Teng, Yan Jun Yin, and Chuang Niu. "Analysis of Rheological Behavior on Transformation Induced Plasticity Steel." Materials Science Forum 850 (March 2016): 120–27. http://dx.doi.org/10.4028/www.scientific.net/msf.850.120.
Pełny tekst źródłaKANG, GUOZHENG, JUN DING, and YUJIE LIU. "DAMAGE-COUPLED CONSTITUTIVE MODEL FOR UNIAXIAL RATCHETING AND FATIGUE FAILURE OF 304 STAINLESS STEEL." International Journal of Modern Physics B 22, no. 31n32 (2008): 5419–24. http://dx.doi.org/10.1142/s0217979208050590.
Pełny tekst źródłaLiu, Yu Jie, and Bin Qiang. "A Cyclic Constitutive Model for Metallic Foam." Advanced Materials Research 910 (March 2014): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.910.285.
Pełny tekst źródłaVodička, Roman. "Comparing various influences on adhesive contact with friction." Selected Scientific Papers - Journal of Civil Engineering 14, no. 2 (2019): 7–18. http://dx.doi.org/10.1515/sspjce-2019-0013.
Pełny tekst źródłaWan, Lin Hui, Ping Cao, Yong Heng Huang, Yi Xian Wang, and Xiang Yang Zhang. "Creep Test of Hard Rock and Modified Generalized Kelvin Creep Model." Applied Mechanics and Materials 90-93 (September 2011): 626–32. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.626.
Pełny tekst źródłaGuo, Jing Rui, Xian Chang Zheng, Ji Qing Zhang, and Zhi Meng Zhao. "Calculation and Analysis on the Soft Soil Foundation Settlement with Elastic-Visco-Plasticity (EVP) Model." Advanced Materials Research 1145 (March 2018): 8–16. http://dx.doi.org/10.4028/www.scientific.net/amr.1145.8.
Pełny tekst źródłaKlein, Olaf. "Asymptotic Behaviour for a Phase-Field Model with Hysteresis in One-Dimensional Thermo-Visco-Plasticity." Applications of Mathematics 49, no. 4 (2004): 309–41. http://dx.doi.org/10.1007/s10492-004-6402-1.
Pełny tekst źródłaBhattacharyya, Mainak, David Dureisseix, and Beatrice Faverjon. "Numerical homogenisation based on asymptotic theory and model reduction for coupled elastic-viscoplastic damage." International Journal of Damage Mechanics 29, no. 9 (2020): 1416–44. http://dx.doi.org/10.1177/1056789520930785.
Pełny tekst źródłaNaing, Myat Thu, Teuku Faisal Fathani, and Wahyu Wilopo. "Estimating the Velocity of Landslide Movement Using Visco-Plastic Model in Jeruk Sub-village, Kulon Progo District, Yogyakarta, Indonesia." Journal of the Civil Engineering Forum 4, no. 3 (2018): 276. http://dx.doi.org/10.22146/jcef.35097.
Pełny tekst źródłaKermouche, G., N. Aleksy, and J. M. Bergheau. "Viscoelastic-Viscoplastic Modelling of the Scratch Response of PMMA." Advances in Materials Science and Engineering 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/289698.
Pełny tekst źródłaCoghe, Frederik, Wim Tirry, Luc Rabet, and Paul van Houtte. "Characterization and Modeling of Twinning in a Titanium Alloy Ti-6Al-4V." Materials Science Forum 702-703 (December 2011): 237–40. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.237.
Pełny tekst źródłaBergheau, Jean-Michel, Josette Devaux, Ge´rard Mottet, and Philippe Gilles. "Prediction of Creep Rupture of Pressure Vessels." Journal of Pressure Vessel Technology 126, no. 2 (2004): 163–68. http://dx.doi.org/10.1115/1.1687799.
Pełny tekst źródłaDong, Yawei, Dongyang Xie, Yang Zhang, and Xiong Xiao. "On the Study of Cyclic Crystal Plasticity Ratchetting Constitutive Model for Polycrystalline Pure Copper." International Journal of Applied Mechanics 11, no. 04 (2019): 1950041. http://dx.doi.org/10.1142/s1758825119500418.
Pełny tekst źródłaMucha, Marzena, Balbina Wcisło, and Jerzy Pamin. "Simulation of PLC Effect Using Regularized Large-Strain Elasto-Plasticity." Materials 15, no. 12 (2022): 4327. http://dx.doi.org/10.3390/ma15124327.
Pełny tekst źródłaKonrad, Julian, Sebastian Pfaller, and Dirk Zahn. "Multi-Scale Modelling of Plastic Deformation, Damage and Relaxation in Epoxy Resins." Polymers 14, no. 16 (2022): 3240. http://dx.doi.org/10.3390/polym14163240.
Pełny tekst źródłaRouse, James P., Christopher J. Hyde, Wei Sun, and Thomas H. Hyde. "Comparison of several optimisation strategies for the determination of material constants in the Chaboche visco-plasticity model." Journal of Strain Analysis for Engineering Design 48, no. 6 (2013): 347–63. http://dx.doi.org/10.1177/0309324713490925.
Pełny tekst źródłaChełmiński, Krzysztof, and Sebastian Owczarek. "Renormalized solutions in thermo-visco-plasticity for a Norton–Hoff type model. Part I: The truncated case." Nonlinear Analysis: Real World Applications 28 (April 2016): 140–52. http://dx.doi.org/10.1016/j.nonrwa.2015.09.008.
Pełny tekst źródłaChełmiński, Krzysztof, and Sebastian Owczarek. "Renormalised solutions in thermo-visco-plasticity for a Norton–Hoff type model. Part II: The limit case." Nonlinear Analysis: Real World Applications 31 (October 2016): 643–60. http://dx.doi.org/10.1016/j.nonrwa.2016.03.009.
Pełny tekst źródłaMünstermann, Sebastian, Pawel Kucharczyk, Georg Golisch, and Benedikt Döbereiner. "Phenomenological Modelling of Impact Toughness Transition Behaviour." Applied Mechanics and Materials 784 (August 2015): 27–34. http://dx.doi.org/10.4028/www.scientific.net/amm.784.27.
Pełny tekst źródłaMocko, W. "Comparison of Energy Absorption Properties of High Nitrogen Austenitic Steel and Cast Alloy Determined Using Low Velocity Perforation Test." Archives of Metallurgy and Materials 59, no. 1 (2014): 65–69. http://dx.doi.org/10.2478/amm-2014-0011.
Pełny tekst źródłaGalán-López, Jesús, Behnam Shakerifard, Jhon Ochoa-Avendaño, and Leo A. I. Kestens. "Advanced Crystal Plasticity Modeling of Multi-Phase Steels: Work-Hardening, Strain Rate Sensitivity and Formability." Applied Sciences 11, no. 13 (2021): 6122. http://dx.doi.org/10.3390/app11136122.
Pełny tekst źródłaStrzelecki, T., and M. Bartlewska-Urban. "Numerical Calculations of the Consolidation of Flotation Waste Landfill “Zelazny Most” Based on Biot’s Model with the Kelvin - Voight Rheological Skeleton." Archives of Civil Engineering 57, no. 2 (2011): 199–213. http://dx.doi.org/10.2478/v.10169-011-0015-3.
Pełny tekst źródłaEngler, Olaf, and Ole Runar Myhr. "Effect of Natural Ageing on Strength and Anisotropy in Aluminium Alloy AA 6005C." Materials Science Forum 877 (November 2016): 688–94. http://dx.doi.org/10.4028/www.scientific.net/msf.877.688.
Pełny tekst źródłaLi, Sai Yi. "Grain Refinement Efficiency in Equal Channel Angular Extrusion of FCC Metals Inferred from Crystal Plasticity Simulations of Slip Activities." Materials Science Forum 638-642 (January 2010): 1971–76. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1971.
Pełny tekst źródłaDong, Yi, Miao Juan Peng, Yong Qi Ma, and Wei Feng. "Nonlinear Finite Element Research for the Rutting of Asphalt Pavement Base on Shear Stress Analysis." Applied Mechanics and Materials 97-98 (September 2011): 91–94. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.91.
Pełny tekst źródłaHu, Xiao Dong, and Dong Ying Ju. "Simulation of Inelastic Deformation and Thermal Mechanical Stresses in Twin-Roll Casting Process of Mg Alloy." Key Engineering Materials 340-341 (June 2007): 877–82. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.877.
Pełny tekst źródłaGalán-López, Jesús, and Javier Hidalgo. "Use of the Correlation between Grain Size and Crystallographic Orientation in Crystal Plasticity Simulations: Application to AISI 420 Stainless Steel." Crystals 10, no. 9 (2020): 819. http://dx.doi.org/10.3390/cryst10090819.
Pełny tekst źródłaWang, Qingqing, Chengli Yang, Haifeng Yang, and Yibo He. "Simulation of Mechanical Response in Machining of Ti-6Al-4V Based on Finite Element Model and Visco-Plastic Self-Consistent Model." Metals 13, no. 8 (2023): 1362. http://dx.doi.org/10.3390/met13081362.
Pełny tekst źródłaTorres, Dery, Shu Guo, Maria-Pilar Villar, Daniel Araujo, and Rafael Estevez. "Calibration of a Cohesive Model for Fracture in Low Cross-Linked Epoxy Resins." Polymers 10, no. 12 (2018): 1321. http://dx.doi.org/10.3390/polym10121321.
Pełny tekst źródłaEngler, Olaf, Galyna Laptyeva, Holger Aretz, and Gernot Nitzsche. "Crystal-Plasticity Simulation of the Evolution of the Matt Surface in Pack Rolling of Aluminium Foil." Materials Science Forum 794-796 (June 2014): 553–58. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.553.
Pełny tekst źródłaLamm, L., H. Holthusen, T. Brepols, S. Jockenhövel, and S. Reese. "A macroscopic approach for stress-driven anisotropic growth in bioengineered soft tissues." Biomechanics and Modeling in Mechanobiology 21, no. 2 (2022): 627–45. http://dx.doi.org/10.1007/s10237-021-01554-1.
Pełny tekst źródłaGlavas, Vedran, Thomas Böhlke, Dominique Daniel, and Christian Leppin. "Texture Based Finite Element Simulation of a Two-Step Can Forming Process." Key Engineering Materials 504-506 (February 2012): 655–60. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.655.
Pełny tekst źródłaSzmytka, F., M. Bourgeois, T. M. L. Nguyen-Tajan, L. Remy, A. Köster, and H. Maitournam. "Development of a new model of élasto-visco-plasticity. Application to the fatigue design of an exhaust manifold of a Diesel engine." Revue de Métallurgie 105, no. 6 (2008): 341–46. http://dx.doi.org/10.1051/metal:2008050.
Pełny tekst źródłaCirigliano, Daniele, Herol Lawerence D'Souza, Felix Grimm, Peter Kutne, and Manfred Aigner. "Creep-damage modelling for micro gas turbine combustion chambers lifetime prediction." Journal of the Global Power and Propulsion Society 7 (June 9, 2023): 166–76. http://dx.doi.org/10.33737/jgpps/163088.
Pełny tekst źródłaSancho, Rafael, Javier Segurado, Borja Erice, María-Jesús Pérez-Martín, and Francisco Gálvez. "Crystal-Plasticity-Finite-Element Modeling of the Quasi-Static and Dynamic Response of a Directionally Solidified Nickel-Base Superalloy." Materials 13, no. 13 (2020): 2990. http://dx.doi.org/10.3390/ma13132990.
Pełny tekst źródła