Artykuły w czasopismach na temat „Viral fusion glycoproteins”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Viral fusion glycoproteins”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Oliver, Michael R., Kamilla Toon, Charlotte B. Lewis, Stephen Devlin, Robert J. Gifford i Joe Grove. "Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism". PLOS Biology 21, nr 7 (11.07.2023): e3002174. http://dx.doi.org/10.1371/journal.pbio.3002174.
Pełny tekst źródłaQuinn, Derek J., Neil V. McFerran, John Nelson i W. Paul Duprex. "Live-cell visualization of transmembrane protein oligomerization and membrane fusion using two-fragment haptoEGFP methodology". Bioscience Reports 32, nr 3 (29.03.2012): 333–43. http://dx.doi.org/10.1042/bsr20110100.
Pełny tekst źródłaLibersou, Sonia, Aurélie A. V. Albertini, Malika Ouldali, Virginie Maury, Christine Maheu, Hélène Raux, Felix de Haas, Stéphane Roche, Yves Gaudin i Jean Lepault. "Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion". Journal of Cell Biology 191, nr 1 (4.10.2010): 199–210. http://dx.doi.org/10.1083/jcb.201006116.
Pełny tekst źródłaLay Mendoza, Maria Fernanda, Marissa Danielle Acciani, Courtney Nina Levit, Christopher Santa Maria i Melinda Ann Brindley. "Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins". Viruses 12, nr 12 (17.12.2020): 1457. http://dx.doi.org/10.3390/v12121457.
Pełny tekst źródłaJambunathan, Nithya, Carolyn M. Clark, Farhana Musarrat, Vladimir N. Chouljenko, Jared Rudd i Konstantin G. Kousoulas. "Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion". Viruses 13, nr 9 (16.09.2021): 1849. http://dx.doi.org/10.3390/v13091849.
Pełny tekst źródłaZhang, You, Joanne York, Melinda A. Brindley, Jack H. Nunberg i Gregory B. Melikyan. "Fusogenic structural changes in arenavirus glycoproteins are associated with viroporin activity". PLOS Pathogens 19, nr 7 (26.07.2023): e1011217. http://dx.doi.org/10.1371/journal.ppat.1011217.
Pełny tekst źródłaJackson, Julia O., i Richard Longnecker. "Reevaluating Herpes Simplex Virus Hemifusion". Journal of Virology 84, nr 22 (15.09.2010): 11814–21. http://dx.doi.org/10.1128/jvi.01615-10.
Pełny tekst źródłaMelder, Deborah C., Xueqian Yin, Sue E. Delos i Mark J. Federspiel. "A Charged Second-Site Mutation in the Fusion Peptide Rescues Replication of a Mutant Avian Sarcoma and Leukosis Virus Lacking Critical Cysteine Residues Flanking the Internal Fusion Domain". Journal of Virology 83, nr 17 (10.06.2009): 8575–86. http://dx.doi.org/10.1128/jvi.00526-09.
Pełny tekst źródłaYang, Xinzhen, Svetla Kurteva, Xinping Ren, Sandra Lee i Joseph Sodroski. "Subunit Stoichiometry of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers during Virus Entry into Host Cells". Journal of Virology 80, nr 9 (1.05.2006): 4388–95. http://dx.doi.org/10.1128/jvi.80.9.4388-4395.2006.
Pełny tekst źródłaKinzler, Eric R., i Teresa Compton. "Characterization of Human Cytomegalovirus Glycoprotein-Induced Cell-Cell Fusion". Journal of Virology 79, nr 12 (15.06.2005): 7827–37. http://dx.doi.org/10.1128/jvi.79.12.7827-7837.2005.
Pełny tekst źródłaVallbracht, Melina, Barbara G. Klupp i Thomas C. Mettenleiter. "Die komplexe Fusionsmaschinerie der Herpesviren". BIOspektrum 28, nr 2 (marzec 2022): 168–70. http://dx.doi.org/10.1007/s12268-022-1718-5.
Pełny tekst źródłaLavillette, Dimitri, Alessia Ruggieri, Bertrand Boson, Marielle Maurice i François-Loïc Cosset. "Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein". Journal of Virology 76, nr 19 (1.10.2002): 9673–85. http://dx.doi.org/10.1128/jvi.76.19.9673-9685.2002.
Pełny tekst źródłaBude, Sara Amanuel, Zengjun Lu, Zhixun Zhao i Qiang Zhang. "Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development". Vaccines 12, nr 9 (20.09.2024): 1078. http://dx.doi.org/10.3390/vaccines12091078.
Pełny tekst źródłaGarry, Courtney E., i Robert F. Garry. "Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide". Viruses 11, nr 8 (14.08.2019): 750. http://dx.doi.org/10.3390/v11080750.
Pełny tekst źródłaEarnest, James T., Michael P. Hantak, Jung-Eun Park i Tom Gallagher. "Coronavirus and Influenza Virus Proteolytic Priming Takes Place in Tetraspanin-Enriched Membrane Microdomains". Journal of Virology 89, nr 11 (1.04.2015): 6093–104. http://dx.doi.org/10.1128/jvi.00543-15.
Pełny tekst źródłaFan, Qing, Richard Longnecker i Sarah A. Connolly. "A Functional Interaction between Herpes Simplex Virus 1 Glycoprotein gH/gL Domains I and II and gD Is Defined by Using Alphaherpesvirus gH and gL Chimeras". Journal of Virology 89, nr 14 (29.04.2015): 7159–69. http://dx.doi.org/10.1128/jvi.00740-15.
Pełny tekst źródłaFederspiel, Mark J. "Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity". Viruses 11, nr 6 (30.05.2019): 497. http://dx.doi.org/10.3390/v11060497.
Pełny tekst źródłaSnyder, Aleksandra, Todd W. Wisner i David C. Johnson. "Herpes Simplex Virus Capsids Are Transported in Neuronal Axons without an Envelope Containing the Viral Glycoproteins". Journal of Virology 80, nr 22 (13.09.2006): 11165–77. http://dx.doi.org/10.1128/jvi.01107-06.
Pełny tekst źródłaBowden, Thomas A., Max Crispin, Stephen C. Graham, David J. Harvey, Jonathan M. Grimes, E. Yvonne Jones i David I. Stuart. "Unusual Molecular Architecture of the Machupo Virus Attachment Glycoprotein". Journal of Virology 83, nr 16 (3.06.2009): 8259–65. http://dx.doi.org/10.1128/jvi.00761-09.
Pełny tekst źródłaTischler, Nicole D., Angel Gonzalez, Tomas Perez-Acle, Mario Rosemblatt i Pablo D. T. Valenzuela. "Hantavirus Gc glycoprotein: evidence for a class II fusion protein". Journal of General Virology 86, nr 11 (1.11.2005): 2937–47. http://dx.doi.org/10.1099/vir.0.81083-0.
Pełny tekst źródłaSnyder, Aleksandra, Birgitte Bruun, Helena M. Browne i David C. Johnson. "A Herpes Simplex Virus gD-YFP Fusion Glycoprotein Is Transported Separately from Viral Capsids in Neuronal Axons". Journal of Virology 81, nr 15 (23.05.2007): 8337–40. http://dx.doi.org/10.1128/jvi.00520-07.
Pełny tekst źródłaDrummer, Heidi E., Irene Boo i Pantelis Poumbourios. "Mutagenesis of a conserved fusion peptide-like motif and membrane-proximal heptad-repeat region of hepatitis C virus glycoprotein E1". Journal of General Virology 88, nr 4 (1.04.2007): 1144–48. http://dx.doi.org/10.1099/vir.0.82567-0.
Pełny tekst źródłaSantos, Joy Ramielle L., Weijie Sun, Tarana A. Mangukia, Eduardo Reyes-Serratos i Marcelo Marcet-Palacios. "Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry". Viruses 13, nr 8 (31.07.2021): 1515. http://dx.doi.org/10.3390/v13081515.
Pełny tekst źródłaStone, Jacquelyn A., Bhadra M. Vemulapati, Birgit Bradel-Tretheway i Hector C. Aguilar. "Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins". Journal of Virology 90, nr 23 (21.09.2016): 10762–73. http://dx.doi.org/10.1128/jvi.01469-16.
Pełny tekst źródłaBradel-Tretheway, Birgit G., Qian Liu, Jacquelyn A. Stone, Samantha McInally i Hector C. Aguilar. "Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus". Journal of Virology 89, nr 14 (6.05.2015): 7235–47. http://dx.doi.org/10.1128/jvi.00773-15.
Pełny tekst źródłaDollery, Stephen J. "Towards Understanding KSHV Fusion and Entry". Viruses 11, nr 11 (18.11.2019): 1073. http://dx.doi.org/10.3390/v11111073.
Pełny tekst źródłaHasegawa, Kosei, Chunling Hu, Takafumi Nakamura, James D. Marks, Stephen J. Russell i Kah-Whye Peng. "Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins". Journal of Virology 81, nr 23 (5.09.2007): 13149–57. http://dx.doi.org/10.1128/jvi.01415-07.
Pełny tekst źródłaBatonick, Melissa, Antonius G. P. Oomens i Gail W. Wertz. "Human Respiratory Syncytial Virus Glycoproteins Are Not Required for Apical Targeting and Release from Polarized Epithelial Cells". Journal of Virology 82, nr 17 (18.06.2008): 8664–72. http://dx.doi.org/10.1128/jvi.00827-08.
Pełny tekst źródłaZhao, Xuesen, Fang Guo, Mary Ann Comunale, Anand Mehta, Mohit Sehgal, Pooja Jain, Andrea Cuconati i in. "Inhibition of Endoplasmic Reticulum-Resident Glucosidases Impairs Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 Spike Protein-Mediated Entry by Altering the Glycan Processing of Angiotensin I-Converting Enzyme 2". Antimicrobial Agents and Chemotherapy 59, nr 1 (27.10.2014): 206–16. http://dx.doi.org/10.1128/aac.03999-14.
Pełny tekst źródłaPiñón, Josefina D., Sharon M. Kelly, Nicholas C. Price, Jack U. Flanagan i David W. Brighty. "An Antiviral Peptide Targets a Coiled-Coil Domain of the Human T-Cell Leukemia Virus Envelope Glycoprotein". Journal of Virology 77, nr 5 (1.03.2003): 3281–90. http://dx.doi.org/10.1128/jvi.77.5.3281-3290.2003.
Pełny tekst źródłaNieva, José L., i Tatiana Suárez. "Hydrophobic-at-Interface Regions in Viral Fusion Protein Ectodomains". Bioscience Reports 20, nr 6 (1.12.2000): 519–33. http://dx.doi.org/10.1023/a:1010458904487.
Pełny tekst źródłaChandra, Sunandini, Raju Kalaivani, Manoj Kumar, Narayanaswamy Srinivasan i Debi P. Sarkar. "Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes". Molecular Biology of the Cell 28, nr 26 (15.12.2017): 3801–14. http://dx.doi.org/10.1091/mbc.e17-06-0400.
Pełny tekst źródłaGarry, Courtney, i Robert Garry. "Proteomics Computational Analyses Suggest that the Envelope Glycoproteins of Segmented Jingmen Flavi-Like Viruses Are Class II Viral Fusion Proteins (β-Penetrenes) with Mucin-Like Domains". Viruses 12, nr 3 (27.02.2020): 260. http://dx.doi.org/10.3390/v12030260.
Pełny tekst źródłaChen, Bing, Yifan Cheng, Lesley Calder, Stephen C. Harrison, Ellis L. Reinherz, John J. Skehel i Don C. Wiley. "A Chimeric Protein of Simian Immunodeficiency Virus Envelope Glycoprotein gp140 and Escherichia coli Aspartate Transcarbamoylase". Journal of Virology 78, nr 9 (1.05.2004): 4508–16. http://dx.doi.org/10.1128/jvi.78.9.4508-4516.2004.
Pełny tekst źródłaBalliet, John W., Kristin Gendron i Paul Bates. "Mutational Analysis of the Subgroup A Avian Sarcoma and Leukosis Virus Putative Fusion Peptide Domain". Journal of Virology 74, nr 8 (15.04.2000): 3731–39. http://dx.doi.org/10.1128/jvi.74.8.3731-3739.2000.
Pełny tekst źródłaChi, Jung Hee I., Carol A. Harley, Aparna Mukhopadhyay i Duncan W. Wilson. "The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids". Journal of General Virology 86, nr 2 (1.02.2005): 253–61. http://dx.doi.org/10.1099/vir.0.80444-0.
Pełny tekst źródłaKlupp, Barbara G., Ralf Nixdorf i Thomas C. Mettenleiter. "Pseudorabies Virus Glycoprotein M Inhibits Membrane Fusion". Journal of Virology 74, nr 15 (1.08.2000): 6760–68. http://dx.doi.org/10.1128/jvi.74.15.6760-6768.2000.
Pełny tekst źródłaDe Clercq, Erik. "Antiviral Metal Complexes". Metal-Based Drugs 4, nr 3 (1.01.1997): 173–92. http://dx.doi.org/10.1155/mbd.1997.173.
Pełny tekst źródłaPlemper, Richard K., Anthea L. Hammond, Denis Gerlier, Adele K. Fielding i Roberto Cattaneo. "Strength of Envelope Protein Interaction Modulates Cytopathicity of Measles Virus". Journal of Virology 76, nr 10 (15.05.2002): 5051–61. http://dx.doi.org/10.1128/jvi.76.10.5051-5061.2002.
Pełny tekst źródłaPertel, Peter E. "Human Herpesvirus 8 Glycoprotein B (gB), gH, and gL Can Mediate Cell Fusion". Journal of Virology 76, nr 9 (1.05.2002): 4390–400. http://dx.doi.org/10.1128/jvi.76.9.4390-4400.2002.
Pełny tekst źródłaWebb, Stacy R., Stacy E. Smith, Michael G. Fried i Rebecca Ellis Dutch. "Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro". mSphere 3, nr 2 (18.04.2018): e00047-18. http://dx.doi.org/10.1128/msphere.00047-18.
Pełny tekst źródłaLavillette, Dimitri, Eve-Isabelle Pécheur, Peggy Donot, Judith Fresquet, Jennifer Molle, Romuald Corbau, Marlène Dreux, François Penin i François-Loïc Cosset. "Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus". Journal of Virology 81, nr 16 (30.05.2007): 8752–65. http://dx.doi.org/10.1128/jvi.02642-06.
Pełny tekst źródłaMadani, Navid, Amy M. Hubicki, Ana Luisa Perdigoto, Martin Springer i Joseph Sodroski. "Inhibition of Human Immunodeficiency Virus Envelope Glycoprotein- Mediated Single Cell Lysis by Low-Molecular-Weight Antagonists of Viral Entry". Journal of Virology 81, nr 2 (30.08.2006): 532–38. http://dx.doi.org/10.1128/jvi.01079-06.
Pełny tekst źródłaKelly, James T., Stacey Human, Joseph Alderman, Fatoumatta Jobe, Leanne Logan, Thomas Rix, Daniel Gonçalves-Carneiro i in. "BST2/Tetherin Overexpression Modulates Morbillivirus Glycoprotein Production to Inhibit Cell–Cell Fusion". Viruses 11, nr 8 (30.07.2019): 692. http://dx.doi.org/10.3390/v11080692.
Pełny tekst źródłaZhou, Xuan, Giorgia Cimato, Yihua Zhou, Giada Frascaroli i Wolfram Brune. "A Virus Genetic System to Analyze the Fusogenicity of Human Cytomegalovirus Glycoprotein B Variants". Viruses 15, nr 4 (16.04.2023): 979. http://dx.doi.org/10.3390/v15040979.
Pełny tekst źródłaJeetendra, E., Clinton S. Robison, Lorraine M. Albritton i Michael A. Whitt. "The Membrane-Proximal Domain of Vesicular Stomatitis Virus G Protein Functions as a Membrane Fusion Potentiator and Can Induce Hemifusion". Journal of Virology 76, nr 23 (1.12.2002): 12300–12311. http://dx.doi.org/10.1128/jvi.76.23.12300-12311.2002.
Pełny tekst źródłaZelus, Bruce D., Jeanne H. Schickli, Dianna M. Blau, Susan R. Weiss i Kathryn V. Holmes. "Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37°C either by Soluble Murine CEACAM1 Receptors or by pH 8". Journal of Virology 77, nr 2 (15.01.2003): 830–40. http://dx.doi.org/10.1128/jvi.77.2.830-840.2003.
Pełny tekst źródłaKlupp, Barbara, Jan Altenschmidt, Harald Granzow, Walter Fuchs i Thomas C. Mettenleiter. "Glycoproteins Required for Entry Are Not Necessary for Egress of Pseudorabies Virus". Journal of Virology 82, nr 13 (16.04.2008): 6299–309. http://dx.doi.org/10.1128/jvi.00386-08.
Pełny tekst źródłaEisfeld, Hannah S., Alexander Simonis, Sandra Winter, Jason Chhen, Luisa J. Ströh, Thomas Krey, Manuel Koch, Sebastian J. Theobald i Jan Rybniker. "Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages". Viruses 13, nr 10 (15.10.2021): 2076. http://dx.doi.org/10.3390/v13102076.
Pełny tekst źródłaBrighty, David W., i Sushma R. Jassal. "The Synthetic Peptide P-197 Inhibits Human T-Cell Leukemia Virus Type 1 Envelope-Mediated Syncytium Formation by a Mechanism That Is Independent of Hsc70". Journal of Virology 75, nr 21 (1.11.2001): 10472–78. http://dx.doi.org/10.1128/jvi.75.21.10472-10478.2001.
Pełny tekst źródła