Gotowa bibliografia na temat „VIDEO ANOMALY DETECTION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „VIDEO ANOMALY DETECTION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "VIDEO ANOMALY DETECTION"
Zhang, Yuxing, Jinchen Song, Yuehan Jiang i Hongjun Li. "Online Video Anomaly Detection". Sensors 23, nr 17 (26.08.2023): 7442. http://dx.doi.org/10.3390/s23177442.
Pełny tekst źródłade Paula, Davi D., Denis H. P. Salvadeo i Darlan M. N. de Araujo. "CamNuvem: A Robbery Dataset for Video Anomaly Detection". Sensors 22, nr 24 (19.12.2022): 10016. http://dx.doi.org/10.3390/s222410016.
Pełny tekst źródłaDuong, Huu-Thanh, Viet-Tuan Le i Vinh Truong Hoang. "Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey". Sensors 23, nr 11 (24.05.2023): 5024. http://dx.doi.org/10.3390/s23115024.
Pełny tekst źródłaMonakhov, Vladimir, Vajira Thambawita, Pål Halvorsen i Michael A. Riegler. "GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos". Sensors 23, nr 4 (13.02.2023): 2087. http://dx.doi.org/10.3390/s23042087.
Pełny tekst źródłaYuan, Hongchun, Zhenyu Cai, Hui Zhou, Yue Wang i Xiangzhi Chen. "TransAnomaly: Video Anomaly Detection Using Video Vision Transformer". IEEE Access 9 (2021): 123977–86. http://dx.doi.org/10.1109/access.2021.3109102.
Pełny tekst źródłaSun, Che, Chenrui Shi, Yunde Jia i Yuwei Wu. "Learning Event-Relevant Factors for Video Anomaly Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 2 (26.06.2023): 2384–92. http://dx.doi.org/10.1609/aaai.v37i2.25334.
Pełny tekst źródłaLi, Nannan, Xinyu Wu, Huiwen Guo, Dan Xu, Yongsheng Ou i Yen-Lun Chen. "Anomaly Detection in Video Surveillance via Gaussian Process". International Journal of Pattern Recognition and Artificial Intelligence 29, nr 06 (12.08.2015): 1555011. http://dx.doi.org/10.1142/s0218001415550113.
Pełny tekst źródłaSun, Li, Zhiguo Wang, Yujin Zhang i Guijin Wang. "A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection". Sensors 23, nr 3 (2.02.2023): 1612. http://dx.doi.org/10.3390/s23031612.
Pełny tekst źródłaBansod, Suprit, i Abhijeet Nandedkar. "Transfer learning for video anomaly detection". Journal of Intelligent & Fuzzy Systems 36, nr 3 (26.03.2019): 1967–75. http://dx.doi.org/10.3233/jifs-169908.
Pełny tekst źródłaYang, Fan, Zhiwen Yu, Liming Chen, Jiaxi Gu, Qingyang Li i Bin Guo. "Human-Machine Cooperative Video Anomaly Detection". Proceedings of the ACM on Human-Computer Interaction 4, CSCW3 (5.01.2021): 1–18. http://dx.doi.org/10.1145/3434183.
Pełny tekst źródłaRozprawy doktorskie na temat "VIDEO ANOMALY DETECTION"
Tran, Thi Minh Hanh. "Anomaly detection in video". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22443/.
Pełny tekst źródłaTziakos, Ioannis. "Subspace discovery for video anomaly detection". Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/387.
Pełny tekst źródłaLeach, Michael Jeremy Vincent. "Automatic human behaviour anomaly detection in surveillance video". Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3014.
Pełny tekst źródłaAu, Carmen E. "Compression-based anomaly detection for video surveillance applications". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98598.
Pełny tekst źródłaThe use of a compression-based technique inherently reduces the heavy computational and storage demands that other video surveillance applications typically have placed on the system. In order to further reduce the computational and storage load, the anomaly detection algorithm is applied to edges and people, which are image features that have been extracted from the images acquired by the camera.
Laxhammar, Rikard. "Conformal anomaly detection : Detecting abnormal trajectories in surveillance applications". Doctoral thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8762.
Pełny tekst źródłaIsupova, Olga. "Machine learning methods for behaviour analysis and anomaly detection in video". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17771/.
Pełny tekst źródłaSpasic, Nemanja. "Anomaly Detection and Prediction of Human Actions in a Video Surveillance Environment". Thesis, University of Cape Town, 2007. http://pubs.cs.uct.ac.za/archive/00000449/.
Pełny tekst źródłaGarcía, Ling Carlos. "Graphical Glitch Detection in Video Games Using CNNs". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273574.
Pełny tekst źródłaDetta projekt svarar på följande forskningsfråga: Kan man använda Convolutional Neural Networks för att upptäcka felaktiga bilder i videospel? Vi fokuserar på de vanligast förekommande grafiska defekter i videospel, felaktiga textures (sträckt, lågupplöst, saknas och platshållare). Med hjälp av en systematisk process genererar vi data med både normala och felaktiga bilder. För att hitta defekter använder vi CNN via både Classification och Semantic Segmentation, med fokus på den första metoden. Den bäst presterande Classification-modellen baseras på ShuffleNetV2 och når 80.0%, 64.3%, 99.2% och 97.0% precision på respektive sträckt-, lågupplöst-, saknas- och platshållare-buggar. Detta medan endast 6.7% av negativa datapunkter felaktigt klassifieras som positiva. Denna undersökning ser även till hur modellen generaliserar till olika grafiska miljöer, vilka de primära orsakerna till förvirring hos modellen är, hur man kan bedöma säkerheten i nätverkets prediktion och hur man bättre kan förstå modellens interna struktur.
Thornton, Daniel Richard. "Unusual-Object Detection in Color Video for Wilderness Search and Rescue". BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2452.
Pełny tekst źródłaCheng, Guangchun. "Video Analytics with Spatio-Temporal Characteristics of Activities". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc799541/.
Pełny tekst źródłaKsiążki na temat "VIDEO ANOMALY DETECTION"
Isupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75508-3.
Pełny tekst źródłaIsupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Springer, 2018.
Znajdź pełny tekst źródłaIsupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Springer, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "VIDEO ANOMALY DETECTION"
Bala, Raja, i Vishal Monga. "Video Anomaly Detection". W Computer Vision and Imaging in Intelligent Transportation Systems, 227–56. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118971666.ch9.
Pełny tekst źródłaHe, Xinyu, Fei Yuan i Yi Zhu. "Drowning Detection Based on Video Anomaly Detection". W Lecture Notes in Computer Science, 700–711. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87361-5_57.
Pełny tekst źródłaZhu, Yuansheng, Wentao Bao i Qi Yu. "Towards Open Set Video Anomaly Detection". W Lecture Notes in Computer Science, 395–412. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19830-4_23.
Pełny tekst źródłaZhu, Sijie, Chen Chen i Waqas Sultani. "Video Anomaly Detection for Smart Surveillance". W Computer Vision, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_845-1.
Pełny tekst źródłaZhang, Yunzuo, Kaina Guo, Zhaoquan Cai i Tianshan Fu. "Crowd Anomaly Detection in Surveillance Video". W Advances in Artificial Intelligence and Security, 3–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06761-7_1.
Pełny tekst źródłaZhu, Sijie, Chen Chen i Waqas Sultani. "Video Anomaly Detection for Smart Surveillance". W Computer Vision, 1315–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_845.
Pełny tekst źródłaYadav, Divakar, Arti Jain, Saumya Asati i Arun Kumar Yadav. "Video Anomaly Detection for Pedestrian Surveillance". W Computer Vision and Machine Intelligence, 489–500. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7867-8_39.
Pełny tekst źródłaZhao, Chunyue, Beichen Li, Qing Wang i Zhipeng Wang. "Video Anomaly Detection Based on Hierarchical Clustering". W Human Centered Computing, 547–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15127-0_55.
Pełny tekst źródłaReiter, Wolfgang. "Video Anomaly Detection in Post-Procedural Use of Laparoscopic Videos". W Informatik aktuell, 101–6. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29267-6_22.
Pełny tekst źródłaGnouma, Mariem, Ridha Ejbali i Mourad Zaied. "Video Anomaly Detection and Localization in Crowded Scenes". W Advances in Intelligent Systems and Computing, 87–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20005-3_9.
Pełny tekst źródłaStreszczenia konferencji na temat "VIDEO ANOMALY DETECTION"
Liu, Wen, Weixin Luo, Zhengxin Li, Peilin Zhao i Shenghua Gao. "Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/419.
Pełny tekst źródłaCavas, Sumeyye, Muhammet Sebul Beratoglu i Behcet Ugur Toreyin. "Anomaly Detection In Compressed Video". W 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE, 2021. http://dx.doi.org/10.1109/siu53274.2021.9478048.
Pełny tekst źródłaDoshi, Keval, i Yasin Yilmaz. "Towards Interpretable Video Anomaly Detection". W 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2023. http://dx.doi.org/10.1109/wacv56688.2023.00268.
Pełny tekst źródłaJing Wang i Zhijie Xu. "Crowd Anomaly Detection for Automated Video Surveillance". W 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0102.
Pełny tekst źródłaWu, Jie, Wei Zhang, Guanbin Li, Wenhao Wu, Xiao Tan, Yingying Li, Errui Ding i Liang Lin. "Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/162.
Pełny tekst źródłaLv, Hui, Chunyan Xu i Zhen Cui. "Global Information Guided Video Anomaly Detection". W MM '20: The 28th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394171.3416277.
Pełny tekst źródłaJiang, Fan, Junsong Yuan, Sotirios A. Tsaftaris i Aggelos K. Katsaggelos. "Video anomaly detection in spatiotemporal context". W 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5650993.
Pełny tekst źródłaSun, Che, Yunde Jia i Yuwei Wu. "Evidential Reasoning for Video Anomaly Detection". W MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3548091.
Pełny tekst źródłaAu, C. E., S. Skaff i J. J. Clark. "Anomaly Detection for Video Surveillance Applications". W 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.273.
Pełny tekst źródłaMeher, Chinmaya Kumar, Rashmiranjan Nayak i Umesh Chandra Pati. "Video Anomaly Detection Using Variational Autoencoder". W 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE, 2022. http://dx.doi.org/10.1109/isssc56467.2022.10051511.
Pełny tekst źródła