Gotowa bibliografia na temat „VIBRATORY LOADING”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „VIBRATORY LOADING”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "VIBRATORY LOADING"
Lacoste, F. Rocher, i M. P. Bourdouxhe. "Behaviour of impact- and vibratory-driven piles in stiff clay during installation and static loading". Journal of Nepal Geological Society 34 (9.10.2006): 17–24. http://dx.doi.org/10.3126/jngs.v34i0.31874.
Pełny tekst źródłaWang, Jijing, i Zhihua Tan. "Mechanical and Mesoscale Analyses of Cement Stabilized Macadam Prepared by Vibratory and Nonvibratory Mixing Techniques". Advances in Civil Engineering 2021 (9.02.2021): 1–13. http://dx.doi.org/10.1155/2021/6663233.
Pełny tekst źródłaNadutyi, V. P., i E. C. Lapshin. "Probabilistic simulation of vibratory screening under high loading conditions". Refractories and Industrial Ceramics 45, nr 6 (listopad 2004): 453–56. http://dx.doi.org/10.1007/s11148-005-0033-2.
Pełny tekst źródłade Montaudouin, J., N. Reveles i M. J. Smith. "Computational aeroelastic analysis of slowed rotors at high advance ratios". Aeronautical Journal 118, nr 1201 (marzec 2014): 297–313. http://dx.doi.org/10.1017/s0001924000009131.
Pełny tekst źródłaDyrda, Vitalii, Anatolii Kobets, Viktor Pukhalskyi, Yurii Kozub i Oleksandr Chernii. "Dynamics of vibratory partitioned feeders for the uranium ore drawing and feeding". E3S Web of Conferences 109 (2019): 00023. http://dx.doi.org/10.1051/e3sconf/201910900023.
Pełny tekst źródłaGu, Li Zhi, i T. Lee. "Dynamic Stress Intensity Factor with Griffith – II Type Crack in Vibratory Machining and its Influence on Chip Formation". Applied Mechanics and Materials 10-12 (grudzień 2007): 939–44. http://dx.doi.org/10.4028/www.scientific.net/amm.10-12.939.
Pełny tekst źródłaDavid Suits, L., TC Sheahan, MA Mooney i CO Bouton. "Vibratory Plate Loading of Compacted and Instrumented Field Soil Beds". Geotechnical Testing Journal 28, nr 3 (2005): 12448. http://dx.doi.org/10.1520/gtj12448.
Pełny tekst źródłaSobczyk, Kazimierz, Kyriakos Perros i Costas Papadimitriou. "Fatigue Reliability of Multidimensional Vibratory Degrading Systems under Random Loading". Journal of Engineering Mechanics 136, nr 2 (luty 2010): 179–88. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000052.
Pełny tekst źródłaBespalov, A. L., I. G. Svidrak i O. O. Boiko. "Improving the performance of vibration feeders with an electromagnetic vibration drive and a combined vibration system". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 22, nr 93 (13.05.2020): 26–30. http://dx.doi.org/10.32718/nvlvet-f9305.
Pełny tekst źródłaYamazaki, Satoru, Paul S. Weinhold, Ronald D. Graff, Mari Tsuzaki, Mamoru Kawakami, Joe T. Minchew i Albert J. Banes. "Annulus cells release ATP in response to vibratory loading in vitro". Journal of Cellular Biochemistry 90, nr 4 (24.10.2003): 812–18. http://dx.doi.org/10.1002/jcb.10681.
Pełny tekst źródłaRozprawy doktorskie na temat "VIBRATORY LOADING"
Soelarso, Soelarso. "On the finite element analysis and design of the spider net system footing (SNSF) considering static and seismic loadings". Thesis, Compiègne, 2021. https://bibliotheque.utc.fr/Default/doc/SYRACUSE/2021COMP2656.
Pełny tekst źródłaThis thesis is devoted to a thorough understanding of the mechanical behavior of shallow foundations of buildings built on relatively soft soils, based on three-dimensional finite element numerical modelling. The shallow foundations involved allow the diffusion and transfer of loads, as for "spider webs" or "chicken feet". They are frequently used in Indonesia and called Spider Net System Footing (SNSF). These types of foundations are suitable for soft soils but also resistant under earthquake actions. They have little been studied from a scientific point of view. The finite element modeling approach in three-dimensional elasticity is well suited to take into account the couplings of the foundation with the upper structure and with the supporting soil. After validation of our finite element models by comparing our results with existing numerical and experimental ones, we propose two types of analyses based on geometric, mechanical and material data extracted from of a recent construction on the island of Java, Province of Banten. The first type of analyses allows fine relevant modelling of the static behavior of a foundation cell with two columns, subjected to vertical gravity loads. The second type of modelling makes it possible to estimate the frequencies of free vibrations and to study the behavior of a representative foundation cell subjected to seismic actions, under equivalent lateral loads via the Elastic Response Spectrum Approach. The present work includes not only detailed analyses with existing data but also a design proposal for future projects. Special attention is also paid to the role of the foundation and the supporting soil on the axial rigidity, vibration frequencies and bending stiffness. Almost all finite element analyses have been done using the Hyperworks software from Altair (Hypermesh, Optistruct)
BOBAN, AMMU. "DYNAMIC ANALYSIS OF CONFINED GEOMATERIAL SUBJECTED TO VIBRATORY LOADING". Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20018.
Pełny tekst źródłaCzęści książek na temat "VIBRATORY LOADING"
Fressinet, M., F. Fuchs i P. Madelpech. "Fatigue Life Estimation of Structures Subjected to Vibratory Loading". W ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives, 427–42. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1664-3_34.
Pełny tekst źródładu Plooy, N. F., i P. S. Heyns. "Reducing Vibratory Screen Structural Loading Using a Vibration Absorber". W Structural Engineering, Mechanics and Computation, 905–12. Elsevier, 2001. http://dx.doi.org/10.1016/b978-008043948-8/50100-4.
Pełny tekst źródłaHoncharuk, Inna, i Ihor Kupchuk. "STUDY OF MECHANICAL-RHEOLOGICAL PARAMETERS OF FEED GRAIN DURING TO THE IMPACT-CUTTING LOADING". W Theoretical and practical aspects of the development of modern scientific research. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-195-4-15.
Pełny tekst źródłaSolona, Olena, i Ihor Kupchuk. "DEVELOPMENT OF A FUNCTIONAL MODEL OF A VIBRATING MILL WITH ADAPTIVE CONTROL SYSTEM OF MODE PARAMETERS". W Modernization of research area: national prospects and European practices. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-221-0-12.
Pełny tekst źródłaZhulay, Yuriy, Olexiy Nikolayev i Yuri Kvasha. "Estimation of the Mechanical Oscillatory Power of the Drill String for Rational Sonic Drilling". W Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde221175.
Pełny tekst źródłaStreszczenia konferencji na temat "VIBRATORY LOADING"
Aziz, Imran, Wasim Tarar, Imran Akhtar i M. Nadeem Azam. "Vibratory Stress Suppression in Turbine Blades Subjected to Aerodynamic Loading". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63724.
Pełny tekst źródłaKim, Dennis, i Robert M'Closkey. "A MEM vibratory gyro with mode-matching achieved by resonator mass loading". W 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014. IEEE, 2014. http://dx.doi.org/10.1109/plans.2014.6851409.
Pełny tekst źródłaAlexander, Chris, Dave Runte i Randy Long. "Assessing the Effects of Vibratory Loading on Pipelines Using Analysis and Monitoring Techniques". W ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3077.
Pełny tekst źródłaKulkarni, Avadhoot, i Gerry LaRue. "Vibratory Response Characterization of a Radial Turbine Wheel for Automotive Turbocharger Application". W ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51355.
Pełny tekst źródłaErnst, Matthew, Cholmin Choi i Abhijit Dasgupta. "Computational Strategies to Minimize Transient Response During Time-Domain Analysis of Structures Under Vibratory Loading". W ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73200.
Pełny tekst źródłaMcGinty, Robert, John Vine, Dan Liebschutz, Philip Conjelko i Jeffery Brenna. "MH-60 Full Scale Test Rig Loads Development and Analysis". W Vertical Flight Society 76th Annual Forum & Technology Display. The Vertical Flight Society, 2020. http://dx.doi.org/10.4050/f-0076-2020-16368.
Pełny tekst źródłaHealy, Richard, i Farhan Gandhi. "A Computational Investigation of Canted Side-by-side Rotors In Ground Effect". W Vertical Flight Society 79th Annual Forum & Technology Display. The Vertical Flight Society, 2023. http://dx.doi.org/10.4050/f-0079-2023-17990.
Pełny tekst źródłaShen, M. H. Herman, i Theodore Nicholas. "Reliability High Cycle Fatigue Design of Gas Turbine Blading System Using Probabilistic Goodman Diagram". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2652.
Pełny tekst źródłaGordon, Ali P., i Thomas Bouchenot. "A Reduced Order Constitutive Modeling Approach for a Material Subjected to Combined Cycle Fatigue". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76903.
Pełny tekst źródłaLee, Seung Jae, Han C. Yu, Sungeun Peter Kim, Mun-Keun Ha, Gun-Il Park, Jae-Woong Choi, Munsung Kim i James S. C. Tai. "Analysis of Full-Scale Hull Girder Loads of a Container Carrier and Its Simulation Using a Nonlinear Seakeeping Program". W ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20661.
Pełny tekst źródłaRaporty organizacyjne na temat "VIBRATORY LOADING"
Feng, Zhicao. PR-218-174512-R01 Full-Scale Surface Loading Testing of Buried Pipes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2021. http://dx.doi.org/10.55274/r0012107.
Pełny tekst źródłaR.C. Quittmeyer. Mechanical Assessment of the Drip Shield to Vibratory Motion and Dynamic and Static Rock Loading. Office of Scientific and Technical Information (OSTI), sierpień 2005. http://dx.doi.org/10.2172/893882.
Pełny tekst źródłaR.C. Quittmeyer. Mechanical Assessment of the Drep Shield Subject to Vibratory Motion and Dynamic and Static Rock Loading. Office of Scientific and Technical Information (OSTI), listopad 2005. http://dx.doi.org/10.2172/893886.
Pełny tekst źródłaZand, Benjamin. PR-218-104509-R02 Field Validation of Surface Loading Stress Calculations for Buried Pipelines Milestone 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2019. http://dx.doi.org/10.55274/r0011477.
Pełny tekst źródła