Artykuły w czasopismach na temat „Vibration bandgap”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Vibration bandgap”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Anigbogu, Winner, i Hamzeh Bardaweel. "A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting". Shock and Vibration 2020 (13.06.2020): 1–12. http://dx.doi.org/10.1155/2020/4063025.
Pełny tekst źródłaDong, Xingjian, Shuo Wang, Anshuai Wang, Liang Wang, Zhaozhan Zhang, Yuanhao Tie, Qingyu Lin i Yongtao Sun. "Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial". Applied Mathematics and Mechanics 45, nr 10 (30.09.2024): 1841–56. http://dx.doi.org/10.1007/s10483-024-3168-7.
Pełny tekst źródłaYang, Fan, Zhaoyang Ma i Xingming Guo. "Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression". Applied Mathematics and Mechanics 46, nr 1 (styczeń 2025): 1–24. https://doi.org/10.1007/s10483-025-3204-7.
Pełny tekst źródłaHajhosseini, Mohammad. "Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method". Journal of Vibration and Control 26, nr 19-20 (24.01.2020): 1708–20. http://dx.doi.org/10.1177/1077546320902549.
Pełny tekst źródłaGuo, Peng, i Qizheng Zhou. "An Analytical, Numerical, and Experimental Investigation on Transverse Vibrations of a Finite Locally Resonant Beam". Shock and Vibration 2022 (13.06.2022): 1–17. http://dx.doi.org/10.1155/2022/6875718.
Pełny tekst źródłaMuhammad, Shoaib, Shuai Wang, Fengming Li i Chuanzeng Zhang. "Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms". Journal of Vibration and Control 26, nr 15-16 (14.01.2020): 1309–18. http://dx.doi.org/10.1177/1077546319895630.
Pełny tekst źródłaWei, Wei, Feng Guan i Xin Fang. "A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures". Applied Mathematics and Mechanics 45, nr 7 (lipiec 2024): 1171–88. http://dx.doi.org/10.1007/s10483-024-3160-6.
Pełny tekst źródłaGuo, Zhiwei, Buliang Xie, Meiping Sheng i Hao Zeng. "Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators". Applied Sciences 14, nr 4 (11.02.2024): 1467. http://dx.doi.org/10.3390/app14041467.
Pełny tekst źródłaYong, Jiawang, Wanting Li, Xiaojun Hu, Zhishuai Wan, Yiyao Dong i Nenglian Feng. "Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial". Applied Sciences 14, nr 3 (25.01.2024): 1028. http://dx.doi.org/10.3390/app14031028.
Pełny tekst źródłaHan, Wenwen, i Shui Wan. "Flexural Wave Bandgaps in a Prestressed Multisupported Timoshenko Beam with Periodic Inerter-Based Dynamic Vibration Absorbers". Sustainability 15, nr 4 (16.02.2023): 3680. http://dx.doi.org/10.3390/su15043680.
Pełny tekst źródłaXining, Zhao, Zhang Yongwang, Li Bo, Shen Chuangshi, Li Zewei i Zhou Bo. "Active tuning of the vibration and wave propagation properties in electromechanical metamaterial beam". Journal of Applied Physics 132, nr 23 (21.12.2022): 234501. http://dx.doi.org/10.1063/5.0122301.
Pełny tekst źródłaLei, Xiaofei, Peng Chen, Heping Hou, Shanhui Liu i Peng Liu. "Longitudinal vibration wave in the composite elastic metamaterials containing Bragg structure and local resonator". International Journal of Modern Physics B 34, nr 26 (15.09.2020): 2050232. http://dx.doi.org/10.1142/s021797922050232x.
Pełny tekst źródłaQiang, Chenxu, Yuxin Hao, Wei Zhang, Jinqiang Li, Shaowu Yang i Yuteng Cao. "Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam". Applied Mathematics and Mechanics 42, nr 11 (22.10.2021): 1555–70. http://dx.doi.org/10.1007/s10483-021-2790-7.
Pełny tekst źródłaZhang, Shengke, Denghui Qian, Zhiwen Zhang i Haoran Ge. "Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure". Materials 17, nr 7 (8.04.2024): 1702. http://dx.doi.org/10.3390/ma17071702.
Pełny tekst źródłaSUN, Xuyang, Zhong WANG, Jingjun ZHOU, Qian WANG i Jingjian XU. "Study on vibration bandgap characteristics of a cantilever beam type local resonance unit". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 42, nr 4 (sierpień 2024): 643–51. http://dx.doi.org/10.1051/jnwpu/20244240643.
Pełny tekst źródłaYang, Fan, Zhaoyang Ma i Xingming Guo. "Bandgap characteristics of the two-dimensional missing rib lattice structure". Applied Mathematics and Mechanics 43, nr 11 (listopad 2022): 1631–40. http://dx.doi.org/10.1007/s10483-022-2923-6.
Pełny tekst źródłaZhang, Zhen, Qin Wang, Yu Su, Junwei Tian, Xingang Wang i Shoumin Wang. "The influence of component defect states on bandgaps of 2D composite beam frame structures". AIP Advances 13, nr 4 (1.04.2023): 045220. http://dx.doi.org/10.1063/5.0120259.
Pełny tekst źródłaLiu, Jianing, Jinqiang Li i Ying Wu. "Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method". Applied Mathematics and Mechanics 45, nr 10 (30.09.2024): 1807–20. http://dx.doi.org/10.1007/s10483-024-3167-8.
Pełny tekst źródłaKao, De-Wei, Jung-San Chen i Yu-Bin Chen. "Bandgap prediction for a beam containing membrane-arch-mass resonators". Journal of Applied Physics 132, nr 24 (28.12.2022): 244902. http://dx.doi.org/10.1063/5.0118530.
Pełny tekst źródłaAnnessi, A., V. Zega, P. Chiariotti, M. Martarelli i P. Castellini. "An innovative wide and low-frequency bandgap metastructure for vibration isolation". Journal of Applied Physics 132, nr 8 (28.08.2022): 084903. http://dx.doi.org/10.1063/5.0102410.
Pełny tekst źródłaTan, Xinyu, Bolong Jiang, Chunyu Qi, Meng Ma, Jizhao Liu, Wenlin Hu i Shaolin Wang. "Method for Controlling Full-Frequency Band Environment Vibration by Coordinating Metro Vibration Sources and Propagation Paths". Applied Sciences 13, nr 24 (5.12.2023): 12979. http://dx.doi.org/10.3390/app132412979.
Pełny tekst źródłaGao, Weirui, Qian Zhang, Jie Sun i Kai Guo. "A novel 3D-printed magnesium alloy phononic crystal with broadband bandgap". Journal of Applied Physics 133, nr 8 (28.02.2023): 085103. http://dx.doi.org/10.1063/5.0135770.
Pełny tekst źródłaLi, Chengfei, Zhaobo Chen i Yinghou Jiao. "Vibration and Bandgap Behavior of Sandwich Pyramid Lattice Core Plate with Resonant Rings". Materials 16, nr 7 (29.03.2023): 2730. http://dx.doi.org/10.3390/ma16072730.
Pełny tekst źródłaGuo, Peng, Qi-zheng Zhou i Zi-yin Luo. "Theoretical and experimental investigation on the low-frequency vibro-acoustic characteristics of a finite locally resonant plate". AIP Advances 12, nr 11 (1.11.2022): 115201. http://dx.doi.org/10.1063/5.0121331.
Pełny tekst źródłaLi, Wenzhen, Quan Zhou, Zanxu Chen, Xi Ye i Hongfu Wang. "Theoretical modeling and vibration characteristics analysis of acoustic black hole beam". Journal of Physics: Conference Series 2825, nr 1 (1.08.2024): 012032. http://dx.doi.org/10.1088/1742-6596/2825/1/012032.
Pełny tekst źródłaLiu, Jiayang, i Shu Li. "A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties". Materials 16, nr 24 (15.12.2023): 7669. http://dx.doi.org/10.3390/ma16247669.
Pełny tekst źródłaLi, Shuqin, Jing Song i Jingshun Ren. "Design of a Functionally Graded Material Phonon Crystal Plate and Its Application in a Bridge". Applied Sciences 13, nr 13 (29.06.2023): 7677. http://dx.doi.org/10.3390/app13137677.
Pełny tekst źródłaAnigbogu, Winner, i Hamzeh Bardaweel. "A Comparative Study and Analysis of Layered-Beam and Single-Beam Metamaterial Structures: Transmissibility Bandgap Development". Applied Sciences 12, nr 15 (28.07.2022): 7550. http://dx.doi.org/10.3390/app12157550.
Pełny tekst źródłaWu, Kun, Haiyan Hu i Lifeng Wang. "Optimization of a type of elastic metamaterial for broadband wave suppression". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, nr 2251 (lipiec 2021): 20210337. http://dx.doi.org/10.1098/rspa.2021.0337.
Pełny tekst źródłaGuo, Zhiwei, i Meiping Sheng. "Bandgap of flexural wave in periodic bi-layer beam". Journal of Vibration and Control 24, nr 14 (5.04.2016): 2970–85. http://dx.doi.org/10.1177/1077546316640975.
Pełny tekst źródłaZhao, Caiyou, Liuchong Wang, Dongya Liu, Xing Gao, Xi Sheng i Wang Ping. "Vibration control mechanism of the metabarrier under train load via numerical simulation". Journal of Vibration and Control 25, nr 19-20 (29.07.2019): 2553–66. http://dx.doi.org/10.1177/1077546319866036.
Pełny tekst źródłaAlimohammadi, Hossein, Kristina Vassiljeva, S. Hassan HosseinNia i Eduard Petlenkov. "Bandgap Dynamics in Locally Resonant Metastructures: A General Theory of Internal Resonator Coupling". Applied Sciences 14, nr 6 (14.03.2024): 2447. http://dx.doi.org/10.3390/app14062447.
Pełny tekst źródłaAkl, Wael, Hajid Alsupie, Sadok Sassi i Amr M. Baz. "Vibration of Periodic Drill-Strings with Local Sources of Resonance". Vibration 4, nr 3 (17.07.2021): 586–601. http://dx.doi.org/10.3390/vibration4030034.
Pełny tekst źródłaHe, Qiang, Jingkai Nie, Yu Han, Yi Tian, Chao Fan i Guangxu Dong. "Investigation on Low Frequency Bandgap of Coupled Double Beam with Quasi-Zero Stiffness for Power Transformer Vibration Control". Shock and Vibration 2022 (31.12.2022): 1–14. http://dx.doi.org/10.1155/2022/5029189.
Pełny tekst źródłaI, Boris, i Jaesun Lee. "Numerical and Experimental Study of Low-Frequency Membrane Damper for Tube Vibration Suppression". Actuators 13, nr 3 (8.03.2024): 106. http://dx.doi.org/10.3390/act13030106.
Pełny tekst źródłaShu, Hai-Sheng, Xing-Guo Wang, Ru Liu, Xiao-Gang Li, Xiao-Na Shi, Shan-Jun Liang, Li-Huan Xu i Fu-Zhen Dong. "Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method". International Journal of Modern Physics B 29, nr 24 (30.09.2015): 1550176. http://dx.doi.org/10.1142/s0217979215501763.
Pełny tekst źródłaYong, Jiawang, Yiyao Dong, Zhishuai Wan, Wanting Li i Yanyan Chen. "Collaborative Design of Static and Vibration Properties of a Novel Re-Entrant Honeycomb Metamaterial". Applied Sciences 14, nr 4 (12.02.2024): 1497. http://dx.doi.org/10.3390/app14041497.
Pełny tekst źródłaHan, Donghai, Qi Jia, Yuanyu Gao, Qiduo Jin, Xin Fang, Jihong Wen i Dianlong Yu. "Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes". Applied Mathematics and Mechanics 45, nr 10 (30.09.2024): 1821–40. http://dx.doi.org/10.1007/s10483-024-3166-8.
Pełny tekst źródłaGao, Xu, Jiyuan Wei, Jiajing Huo, Zhishuai Wan i Ying Li. "The Vibration Isolation Design of a Re-Entrant Negative Poisson’s Ratio Metamaterial". Applied Sciences 13, nr 16 (21.08.2023): 9442. http://dx.doi.org/10.3390/app13169442.
Pełny tekst źródłaJiang, Hui, Chunfeng Zhao, Yingjie Chen i Jian Liu. "Novel Multi-Vibration Resonator with Wide Low-Frequency Bandgap for Rayleigh Waves Attenuation". Buildings 14, nr 9 (23.08.2024): 2591. http://dx.doi.org/10.3390/buildings14092591.
Pełny tekst źródłaYu, Junmin, Jaesoon Jung i Semyung Wang. "Derivation and Validation of Bandgap Equation Using Serpentine Resonator". Applied Sciences 12, nr 8 (13.04.2022): 3934. http://dx.doi.org/10.3390/app12083934.
Pełny tekst źródłaLi, Yuanyuan, Jiancheng Liu, Zhaoyu Deng, Menyang Gong, Kunqi Huang, Yun Lai i Xiaozhou Liu. "Acoustic three-terminal controller with amplitude control for nonlinear seismic metamaterials". AIP Advances 12, nr 7 (1.07.2022): 075312. http://dx.doi.org/10.1063/5.0099843.
Pełny tekst źródłaGao, Ming, Zhiqiang Wu i Zhijie Wen. "Effective Negative Mass Nonlinear Acoustic Metamaterial with Pure Cubic Oscillator". Advances in Civil Engineering 2018 (30.09.2018): 1–15. http://dx.doi.org/10.1155/2018/3081783.
Pełny tekst źródłaWei, Wenming, Dimitrios Chronopoulos i Han Meng. "Broadband Vibration Attenuation Achieved by 2D Elasto-Acoustic Metamaterial Plates with Rainbow Stepped Resonators". Materials 14, nr 17 (24.08.2021): 4759. http://dx.doi.org/10.3390/ma14174759.
Pełny tekst źródłaGuo, Jin, Rui Zhao i Yunbo Shi. "Towards Broadband High-Frequency Vibration Attenuation Using Notched Cross-Shaped Metamaterial". Micromachines 14, nr 2 (9.02.2023): 414. http://dx.doi.org/10.3390/mi14020414.
Pełny tekst źródłaLi, Yinggang, Qingwen Zhou, Ling Zhu i Kailing Guo. "Hybrid radial plate-type elastic metamaterials for lowering and widening acoustic bandgaps". International Journal of Modern Physics B 32, nr 26 (18.10.2018): 1850286. http://dx.doi.org/10.1142/s0217979218502867.
Pełny tekst źródłaQin, Qi, i Mei-Ping Sheng. "Analyses of multi-bandgap property of a locally resonant plate composed of periodic resonant subsystems". International Journal of Modern Physics B 32, nr 24 (13.09.2018): 1850269. http://dx.doi.org/10.1142/s0217979218502697.
Pełny tekst źródłaLiu, Guoqing, i Denghui Qian. "Investigation of Bandgap Properties of a Piezoelectric Phononic Crystal Plate Based on the PDE Module in COMSOL". Materials 17, nr 10 (14.05.2024): 2329. http://dx.doi.org/10.3390/ma17102329.
Pełny tekst źródłaXu, Lanhe, Xuche Cao, Xinbo Cui i Bing Li. "Vibration Attenuation Performance of Meta-lattice Sandwich Structures with Truss-cores". Journal of Physics: Conference Series 2252, nr 1 (1.04.2022): 012030. http://dx.doi.org/10.1088/1742-6596/2252/1/012030.
Pełny tekst źródłaXu, Lanhe, Xuche Cao, Xinbo Cui i Bing Li. "Vibration Attenuation Performance of Meta-lattice Sandwich Structures with Truss-cores". Journal of Physics: Conference Series 2252, nr 1 (1.04.2022): 012030. http://dx.doi.org/10.1088/1742-6596/2252/1/012030.
Pełny tekst źródła