Gotowa bibliografia na temat „VGG16 MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „VGG16 MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "VGG16 MODEL"
Sukegawa, Shintaro, Kazumasa Yoshii, Takeshi Hara, Katsusuke Yamashita, Keisuke Nakano, Norio Yamamoto, Hitoshi Nagatsuka i Yoshihiko Furuki. "Deep Neural Networks for Dental Implant System Classification". Biomolecules 10, nr 7 (1.07.2020): 984. http://dx.doi.org/10.3390/biom10070984.
Pełny tekst źródłaKumar, Vijay, Anis Zarrad, Rahul Gupta i Omar Cheikhrouhou. "COV-DLS: Prediction of COVID-19 from X-Rays Using Enhanced Deep Transfer Learning Techniques". Journal of Healthcare Engineering 2022 (11.04.2022): 1–13. http://dx.doi.org/10.1155/2022/6216273.
Pełny tekst źródłaLai, Ren Yu, Kim Gaik Tay, Audrey Huong, Chang Choon Chew i Shuhaida Ismail. "Dorsal hand Vein Authentication System Using Convolution Neural Network". International Journal of Emerging Technology and Advanced Engineering 12, nr 8 (2.08.2022): 83–90. http://dx.doi.org/10.46338/ijetae0822_11.
Pełny tekst źródłaBodavarapu, Pavan Nageswar Reddy, i P. V. V. S. Srinivas. "Facial expression recognition for low resolution images using convolutional neural networks and denoising techniques". Indian Journal of Science and Technology 14, nr 12 (27.03.2021): 971–83. http://dx.doi.org/10.17485/ijst/v14i12.14.
Pełny tekst źródłaShinde, Krishna K., i C. N. Kayte. "Fingerprint Recognition Based on Deep Learning Pre-Train with Our Best CNN Model for Person Identification". ECS Transactions 107, nr 1 (24.04.2022): 2209–20. http://dx.doi.org/10.1149/10701.2209ecst.
Pełny tekst źródłaAthavale, Vijay Anant, Suresh Chand Gupta, Deepak Kumar i Savita. "Human Action Recognition Using CNN-SVM Model". Advances in Science and Technology 105 (kwiecień 2021): 282–90. http://dx.doi.org/10.4028/www.scientific.net/ast.105.282.
Pełny tekst źródłaKo, Kyung-Kyu, i Eun-Sung Jung. "Improving Air Pollution Prediction System through Multimodal Deep Learning Model Optimization". Applied Sciences 12, nr 20 (15.10.2022): 10405. http://dx.doi.org/10.3390/app122010405.
Pełny tekst źródłaHasan, Moh Arie, Yan Riyanto i Dwiza Riana. "Grape leaf image disease classification using CNN-VGG16 model". Jurnal Teknologi dan Sistem Komputer 9, nr 4 (5.07.2021): 218–23. http://dx.doi.org/10.14710/jtsiskom.2021.14013.
Pełny tekst źródłaSingh, Tajinder Pal, Sheifali Gupta, Meenu Garg, Amit Verma, V. V. Hung, H. H. Thien i Md Khairul Islam. "Transfer and Deep Learning-Based Gurmukhi Handwritten Word Classification Model". Mathematical Problems in Engineering 2023 (3.05.2023): 1–20. http://dx.doi.org/10.1155/2023/4768630.
Pełny tekst źródłaShakhovska, Nataliya, i Pavlo Pukach. "Comparative Analysis of Backbone Networks for Deep Knee MRI Classification Models". Big Data and Cognitive Computing 6, nr 3 (21.06.2022): 69. http://dx.doi.org/10.3390/bdcc6030069.
Pełny tekst źródłaRozprawy doktorskie na temat "VGG16 MODEL"
Albert, Florea George, i Filip Weilid. "Deep Learning Models for Human Activity Recognition". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20201.
Pełny tekst źródłaThe Augmented Multi-party Interaction(AMI) Meeting Corpus database is used to investigate group activity recognition in an office environment. The AMI Meeting Corpus database provides researchers with remote controlled meetings and natural meetings in an office environment; meeting scenario in a four person sized office room. To achieve the group activity recognition video frames and 2-dimensional audio spectrograms were extracted from the AMI database. The video frames were RGB colored images and audio spectrograms had one color channel. The video frames were produced in batches so that temporal features could be evaluated together with the audio spectrogrames. It has been shown that including temporal features both during model training and then predicting the behavior of an activity increases the validation accuracy compared to models that only use spatial features [1]. Deep learning architectures have been implemented to recognize different human activities in the AMI office environment using the extracted data from the AMI database.The Neural Network models were built using the Keras API together with TensorFlow library. There are different types of Neural Network architectures. The architecture types that were investigated in this project were Residual Neural Network, Visual Geometry Group 16, Inception V3 and RCNN(Recurrent Neural Network). ImageNet weights have been used to initialize the weights for the Neural Network base models. ImageNet weights were provided by Keras API and was optimized for each base model[2]. The base models uses ImageNet weights when extracting features from the input data.The feature extraction using ImageNet weights or random weights together with the base models showed promising results. Both the Deep Learning using dense layers and the LSTM spatio-temporal sequence prediction were implemented successfully.
GUPTA, RASHI. "IMAGE FORGERY DETECTION USING CNN MODEL". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19175.
Pełny tekst źródłaCzęści książek na temat "VGG16 MODEL"
Gupta, Pranjal Raaj, Disha Sharma i Nidhi Goel. "Image Forgery Detection by CNN and Pretrained VGG16 Model". W Advances in Intelligent Systems and Computing, 141–52. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6887-6_13.
Pełny tekst źródłaAnju, T. E., i S. Vimala. "Finetuned-VGG16 CNN Model for Tissue Classification of Colorectal Cancer". W Intelligent Sustainable Systems, 73–84. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1726-6_7.
Pełny tekst źródłaLincy, R. Babitha, i R. Gayathri. "Off-Line Tamil Handwritten Character Recognition Based on Convolutional Neural Network with VGG16 and VGG19 Model". W Advances in Automation, Signal Processing, Instrumentation, and Control, 1935–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_180.
Pełny tekst źródłaRamya Manaswi, V., i B. Sankarababu. "A Flexible Accession on Brain Tumour Detection and Classification Using VGG16 Model". W Smart Intelligent Computing and Applications, Volume 1, 225–38. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9669-5_21.
Pełny tekst źródłaVidya, D., Shivanand Rumma i Mallikarjun Hangargi. "Apple Classification Based on MRI Images Using VGG16 Convolutional Deep Learning Model". W Proceedings of the First International Conference on Advances in Computer Vision and Artificial Intelligence Technologies (ACVAIT 2022), 114–21. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-196-8_10.
Pełny tekst źródłaKumar, Ashish, Raied Razi, Anshul Singh i Himansu Das. "Res-VGG: A Novel Model for Plant Disease Detection by Fusing VGG16 and ResNet Models". W Communications in Computer and Information Science, 383–400. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6318-8_32.
Pełny tekst źródłaRanjan, Amit, Chandrashekhar Kumar, Rohit Kumar Gupta i Rajiv Misra. "Transfer Learning Based Approach for Pneumonia Detection Using Customized VGG16 Deep Learning Model". W Internet of Things and Connected Technologies, 17–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94507-7_2.
Pełny tekst źródłaAhmed, Mohammed Junaid, Ashutosh Satapathy, Ch Raga Madhuri, K. Yashwanth Chowdary i A. Naveen Sai. "A Hybrid Model Built on VGG16 and Random Forest Algorithm for Land Classification". W Inventive Systems and Control, 267–80. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1624-5_20.
Pełny tekst źródłaChhabra, Mohit, i Rajneesh Kumar. "An Advanced VGG16 Architecture-Based Deep Learning Model to Detect Pneumonia from Medical Images". W Lecture Notes in Electrical Engineering, 457–71. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8774-7_37.
Pełny tekst źródłaHason Rudd, David, Huan Huo i Guandong Xu. "An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance". W Advances in Knowledge Discovery and Data Mining, 219–31. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33380-4_17.
Pełny tekst źródłaStreszczenia konferencji na temat "VGG16 MODEL"
Zhang, Jing-Wei, Kuang-Chyi Lee i Gadi Ashok Kumar Reddy. "Rubber Gasket Defect Classification by VGG16 model". W 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). IEEE, 2022. http://dx.doi.org/10.1109/ecice55674.2022.10042837.
Pełny tekst źródłaSurekha, G., Patlolla Sai Keerthana, Nallantla Jaswanth Varma i Tummala Sai Gopi. "Hybrid Image Classification Model using ResNet101 and VGG16". W 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2023. http://dx.doi.org/10.1109/icaaic56838.2023.10140790.
Pełny tekst źródłaAntonio, Elbren, Cyrus Rael i Elmer Buenavides. "Changing Input Shape Dimension Using VGG16 Network Model". W 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS). IEEE, 2021. http://dx.doi.org/10.1109/i2cacis52118.2021.9495858.
Pełny tekst źródłaLi, Ziheng, Yuelong Zhang, Jiankai Zuo, Yupeng Zou i Mingxuan Song. "Improved image-based lung opacity detection of VGG16 model". W 2nd International Conference on Computer Vision, Image and Deep Learning, redaktorzy Fengjie Cen i Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604522.
Pełny tekst źródłaAlbashish, Dheeb, Rizik Al-Sayyed, Azizi Abdullah, Mohammad Hashem Ryalat i Nedaa Ahmad Almansour. "Deep CNN Model based on VGG16 for Breast Cancer Classification". W 2021 International Conference on Information Technology (ICIT). IEEE, 2021. http://dx.doi.org/10.1109/icit52682.2021.9491631.
Pełny tekst źródłaPanthakkan, Alavikunhu, S. M. Anzar, Saeed Al Mansoori i Hussain Al Ahmad. "Accurate Prediction of COVID-19 (+) Using AI Deep VGG16 Model". W 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). IEEE, 2020. http://dx.doi.org/10.1109/icspis51252.2020.9340145.
Pełny tekst źródłaZiyue, Chen, i Gao Yuanyuan. "Primate Recognition System Design Based on Deep Learning Model VGG16". W 2022 7th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2022. http://dx.doi.org/10.1109/icivc55077.2022.9886310.
Pełny tekst źródłaN, Valarmathi, Bavya S, Deepika p, Dharani L i Hemalatha P. "Deep Learning Model for Automated Kidney Stone Detection using VGG16". W 2023 Second International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2023. http://dx.doi.org/10.1109/icears56392.2023.10085509.
Pełny tekst źródłaQassim, Hussam, Abhishek Verma i David Feinzimer. "Compressed residual-VGG16 CNN model for big data places image recognition". W 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2018. http://dx.doi.org/10.1109/ccwc.2018.8301729.
Pełny tekst źródłaJin, Xuesong, Xin Du i Huiyuan Sun. "VGG-S: Improved Small Sample Image Recognition Model Based on VGG16". W 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). IEEE, 2021. http://dx.doi.org/10.1109/aiam54119.2021.00054.
Pełny tekst źródła