Artykuły w czasopismach na temat „Verres à quantum dots”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Verres à quantum dots.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Verres à quantum dots”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Mujala, Abdul, Muhammad Reza i Kana Puspita. "Atomic Structure and Its Connection to The Quranic Verses' Context". Elkawnie 9, nr 1 (18.08.2023): 48. http://dx.doi.org/10.22373/ekw.v9i1.14842.

Pełny tekst źródła
Streszczenie:
Abstract: The growth of science in the twenty-first century, particularly in chemistry, is critically dependent on the integration of science and the Qur'an. Since numerous verses in the Qur'an disclose the fundamental principles of chemistry, such as the size of an atom, the integration of science and the Qur'an is nothing new in modern science, especially chemistry. As a result, this article will go into further detail regarding the atomic structure's physical setting and how it relates to Qur'anic verses. Writing this paper involved conducting literature searches on both contemporary science and Qur'anic interpretations of atomic structure. The word "dzarrah" appears in QS Az-Zalzalah verses 7-8, An-Nisa verse 40, and Yunus verse 61, and is interpreted as the size of a mustard seed that the human intellect may yet attain. However, "dzarrah" is often frequently interpreted as atomic size, since the atomic radius of the smallest atom (Hydrogen) and biggest atom (Organesson) atoms are 1.2 x 10-10 m and 1.52 x 10-10 m, respectively, with 1 million being smaller than the radius of mustard seed (5 x 10-4 m). Thus, the word dzarrah, which is translated as the size of a mustard seed, is less proportional to describe a much smaller atomic size. This atomic scale later served as a precursor for new developments in chemical research, such as nanomaterials and quantum dots.Abstrak: Integrasi sains dan Al-Qur’an menjadi dasar yang penting untuk pengembangan ilmu sains pada abad ke-21, khususnya dalam ilmu kimia. Integrasi sains dengan Al-Qur’an sebetulnya bukanlah hal baru dalam sains modern, khususnya kimia, karena ada banyak ayat-ayat Al-Qur’an yang mengungkapkan tentang konsep dasar kimia, misalnya ukuran atom. Oleh karena itu, artikel ini akan membahas secara lebih jelas tentang konteks materi struktur atom dan kaitannya dengan ayat-ayat Al-Qur’an. Metode penulisan artikel ini menggunakan kajian literatur, baik itu dari segi sains modern dan tafsir Al-Qur’an tentang struktur atom. Kata “dzarrah” muncul dalam QS Az-Zalzalah ayat 7-8, QS An-Nisa ayat 40, dan QS Yunus ayat 61, yang ditafsirkan seukuran biji sawi yang ukurannya masih dapat dijangkau oleh pikiran manusia. Namun, “dzarrah” juga kerap diterjemahkan seukuran atom, padahal jari-jari 1 atom paling kecil (Hidrogen) dan paling besar (Organesson) berturut-turut adalah 1,2 x 10-10 m dan 1,52 x 10-10 m, dimana 1 juta lebih kecil dari jari-jari biji sawi (5 x 10-4 m). Sehingga kata dzarrah yang diterjemahkan sebagai ukuran biji sawi kurang proporsional untuk menggambarkan ukuran atom yang jauh lebih kecil. Ukuran atom ini kemudian menjadi cikal bakal perkembangan penelitian di bidang kimia, misalnya nanomaterial dan quantum dots.
Style APA, Harvard, Vancouver, ISO itp.
2

Kouwenhoven, Leo, i Charles Marcus. "Quantum dots". Physics World 11, nr 6 (czerwiec 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Reed, Mark A. "Quantum Dots". Scientific American 268, nr 1 (styczeń 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Artemyev, M. V., i U. Woggon. "Quantum dots in photonic dots". Applied Physics Letters 76, nr 11 (13.03.2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Loss, Daniel, i David P. DiVincenzo. "Quantum computation with quantum dots". Physical Review A 57, nr 1 (1.01.1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

López, Juan Carlos. "Quantum leap for quantum dots". Nature Reviews Neuroscience 4, nr 3 (marzec 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zunger, Alex. "Semiconductor Quantum Dots". MRS Bulletin 23, nr 2 (luty 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Pełny tekst źródła
Streszczenie:
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
Style APA, Harvard, Vancouver, ISO itp.
8

Barachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, nr 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Pełny tekst źródła
Streszczenie:
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Style APA, Harvard, Vancouver, ISO itp.
9

Barachevsky, V. A. "Photochromic Quantum Dots". Russian Physics Journal 64, nr 11 (marzec 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Evanko, Daniel. "Bioluminescent quantum dots". Nature Methods 3, nr 4 (kwiecień 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Lindberg, V., i B. Hellsing. "Metallic quantum dots". Journal of Physics: Condensed Matter 17, nr 13 (19.03.2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kaputkina, N. E., i Yu E. Lozovik. "“Spherical” quantum dots". Physics of the Solid State 40, nr 11 (listopad 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Dukes, Albert D., James R. McBride i Sandra Rosenthal. "Luminescent Quantum Dots". ECS Transactions 33, nr 33 (17.12.2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Tinkham, M. "Metallic quantum dots". Philosophical Magazine B 79, nr 9 (wrzesień 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin i Bruce E. Cohen. "Caged Quantum Dots". Journal of the American Chemical Society 130, nr 47 (26.11.2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pile, David. "Intraband quantum dots". Nature Photonics 9, nr 1 (23.12.2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Guyot-Sionnest, Philippe. "Colloidal quantum dots". Comptes Rendus Physique 9, nr 8 (październik 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhou, Weidong, i James J. Coleman. "Semiconductor quantum dots". Current Opinion in Solid State and Materials Science 20, nr 6 (grudzień 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Gershoni, David. "Pyramidal quantum dots". Nature Photonics 4, nr 5 (maj 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Nomura, Masahiro, i Yasuhiko Arakawa. "Shaking quantum dots". Nature Photonics 6, nr 1 (22.12.2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein i John L. Hutchison. "Electrodeposited quantum dots". Surface Science 311, nr 1-2 (maj 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev i A. L. Aseev. "AlInAs quantum dots". JETP Letters 105, nr 2 (styczeń 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati i C. N. R. Rao. "Phosphorene quantum dots". Chemical Physics Letters 699 (maj 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

H. Sargent, E. "Infrared Quantum Dots". Advanced Materials 17, nr 5 (8.03.2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Nozik, A. J., H. Uchida, P. V. Kamat i C. Curtis. "GaAs Quantum Dots". Israel Journal of Chemistry 33, nr 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Bacon, Mitchell, Siobhan J. Bradley i Thomas Nann. "Graphene Quantum Dots". Particle & Particle Systems Characterization 31, nr 4 (27.11.2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Tárnok, Attila. "Quantum of dots". Cytometry Part A 77A, nr 10 (24.09.2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce i S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots". Optics and Photonics News 13, nr 12 (1.12.2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto i Akira Endo. "Quantum Charge Fluctuations in Quantum Dots". Journal of the Physical Society of Japan 69, nr 3 (15.03.2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Burkard, Guido, Daniel Loss i David P. DiVincenzo. "Coupled quantum dots as quantum gates". Physical Review B 59, nr 3 (15.01.1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Lozada-Cassou, M., Shi-Hai Dong i Jiang Yu. "Quantum features of semiconductor quantum dots". Physics Letters A 331, nr 1-2 (październik 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Molotkov, S. N., i S. S. Nazin. "Quantum cryptography based on quantum dots". Journal of Experimental and Theoretical Physics Letters 63, nr 8 (kwiecień 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh i D. Vasileska. "Quantum transport in ballistic quantum dots". Physica E: Low-dimensional Systems and Nanostructures 3, nr 1-3 (październik 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu i A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, nr 2 (26.02.2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Pachos, Jiannis K., i Vlatko Vedral. "Topological quantum gates with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, nr 6 (16.10.2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin i Irina A. Yugova. "Quantum beats in semiconductor quantum dots". Journal of Luminescence 108, nr 1-4 (czerwiec 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls i Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie 124, nr 50 (7.11.2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Bryant, Garnett W. "Quantum dots in quantum well structures". Journal of Luminescence 70, nr 1-6 (październik 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei i Jianxin Zhong. "Quantum confinement in graphene quantum dots". physica status solidi (RRL) - Rapid Research Letters 8, nr 5 (31.03.2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls i Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie International Edition 51, nr 50 (7.11.2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth i Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)". Small 11, nr 38 (październik 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Yong, Ken-Tye. "Quantum Dots for Biophotonics". Theranostics 2, nr 7 (2012): 629–30. http://dx.doi.org/10.7150/thno.4757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zhao, Rongzheng, Shuhao Liu, Xuewen Zhao, Mengyue Gu, Yuhao Zhang, Mengting Jin, Yanhao Wang, Yonghong Cheng i Jinying Zhang. "Violet phosphorus quantum dots". Journal of Materials Chemistry A 10, nr 1 (2022): 245–50. http://dx.doi.org/10.1039/d1ta09132h.

Pełny tekst źródła
Streszczenie:
Violet phosphorus quantum dots have been produced for the first time, which are effective fluorescent probes to selectively detect Cu2+. The morphology, microstructure and fluorescence properties have been tuned using synthesis parameters.
Style APA, Harvard, Vancouver, ISO itp.
44

Xing, Ming, Huaibin Shen, Wei Zhao, Yanfei Liu, Yingda Du, Zhenxiang Yu i Xia Chen. "dsDNA-coated quantum dots". BioTechniques 50, nr 4 (kwiecień 2011): 259–61. http://dx.doi.org/10.2144/000113650.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Han, Chang-Yeol, Hyun-Sik Kim i Heesun Yang. "Quantum Dots and Applications". Materials 13, nr 4 (18.02.2020): 897. http://dx.doi.org/10.3390/ma13040897.

Pełny tekst źródła
Streszczenie:
It is the unique size-dependent band gap of quantum dots (QDs) that makes them so special in various applications. They have attracted great interest, especially in optoelectronic fields such as light emitting diodes and photovoltaic cells, because their photoluminescent characteristics can be significantly improved via optimization of the processes by which they are synthesized. Control of their core/shell heterostructures is especially important and advantageous. However, a few challenges remain to be overcome before QD-based devices can completely replace current optoelectronic technology. This Special Issue provides detailed guides for synthesis of high-quality QDs and their applications. In terms of fabricating devices, tailoring optical properties of QDs and engineering defects in QD-related interfaces for higher performance remain important issues to be addressed.
Style APA, Harvard, Vancouver, ISO itp.
46

Prevenslik, Thomas. "Quantum Dots by QED". Advanced Materials Research 31 (listopad 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.

Pełny tekst źródła
Streszczenie:
High quantum dot (QD) efficiency may be explained by excitons generated in the quantum electrodynamics (QED) confinement of electromagnetic (EM) radiation during the absorption of the laser radiation. There is general agreement that by the Mie theory laser photons are fully absorbed by QDs smaller than the laser wavelength. But how the absorbed laser photons are conserved by a QD is another matter. Classically, absorbed laser radiation is treated as heat that in a body having specific heat is conserved by an increase in temperature. However, the specific heats of QDs vanish at frequencies in the near infrared (NIR) and higher, and therefore an increase in temperature cannot conserve the absorbed laser photons. Instead by QED, the laser photon energy is first suppressed because the photon frequency is lower than the EM confinement frequency imposed by the QD geometry. To conserve the loss of suppressed EM energy, an equivalent gain must occur. But the only EM energy allowed in a QED confinement has a frequency equal to or greater than its EM resonance, and therefore the laser photons are then up-converted to the QD confinement frequency - the process called cavity QED induced EM radiation. High QD efficiency is the consequence of multiple excitons generated in proportion to very high QED induced Planck energy because at the nanoscale the EM confinement frequencies range from the vacuum ultraviolet (VUV) to soft x-rays (SXRs). Extensions of QED induced EM radiation are made to surface enhanced Raman spectroscopy (SERS) and light emission from porous silicon (PS).
Style APA, Harvard, Vancouver, ISO itp.
47

Smith, Andrew M., i Shuming Nie. "Next-generation quantum dots". Nature Biotechnology 27, nr 8 (sierpień 2009): 732–33. http://dx.doi.org/10.1038/nbt0809-732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Viswanath, V., i S. Sayeeda Malaika. "OVERVIEW OF QUANTUM DOTS". International Journal of Pharmacy and Technology 12, nr 01 (31.03.2020): 31895–916. http://dx.doi.org/10.32318/ijpt/0975-766x/12(1).31895-31916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Khalessi, Alexander A., Charles Y. Liu i Michael L. J. Apuzzo. "NEUROSURGERY AND QUANTUM DOTS". Neurosurgery 64, nr 6 (1.06.2009): 1015–28. http://dx.doi.org/10.1227/01.neu.0000347889.62762.3f.

Pełny tekst źródła
Streszczenie:
Abstract THIS ARTICLE REPRESENTS the first of a 2-part exploration of quantum dots (Qdots) and their application to neurological surgery. Spanning from materials science to immunology, this initial review traces the marriage of imaging physics to biochemical specificity. Qdot science now stands poised to dramatically advance the diagnosis and therapy of neurosurgical conditions. Qdot research efforts currently involve several disciplines; this comprehensive review therefore considers multiple fields of inquiry. This first installment discusses 1) Qdot physical properties, 2) established biological and in vivo properties, 3) magnetic resonance imaging applications, and (4) existing cardiovascular and oncologic research. Finally, this review establishes the existing bounds of Qdot possibilities. The second concept article details future endovascular diagnostic and therapeutic methods derived from these seminal advances.
Style APA, Harvard, Vancouver, ISO itp.
50

Wang, C. "Electrochromic Nanocrystal Quantum Dots". Science 291, nr 5512 (23.03.2001): 2390–92. http://dx.doi.org/10.1126/science.291.5512.2390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii