Artykuły w czasopismach na temat „Velocity”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Velocity.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Velocity”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas i G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, nr 5 (maj 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng i In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, nr 1 (30.01.2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.

Pełny tekst źródła
Streszczenie:
Surface velocity measurement using electromagnetic waves is common in flood season discharge surveys in Korea. In order to expand the relatively safe non-contact discharge survey, this study investigated the reliability of the coefficient that converts surface velocity to mean velocity in rivers and waterways. Surface and mean velocity were investigated for agricultural reservoir spillways, gravel rivers, and irrigation canals, and the volumetric capacity of agricultural reservoirs was confirmed. As a result of the investigation, the mean velocity conversion coefficients according to the riverbed slope or riverbed material were very diverse, such as 0.61, 0.90, 0.52, and 0.88. The above result makes it clear that each investigation point has a unique conversion coefficient according to the characteristics of the bed material. In other words, accurate discharge investigation is possible by knowing the unique conversion factor to each point. The importance of water management due to climate change is increasing day by day. Accurate flow rate for rivers and waterways will be used as an essential factor for quantitative water resource management in the future.
Style APA, Harvard, Vancouver, ISO itp.
3

Cojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, nr 9 (5.09.2019): 275–82. http://dx.doi.org/10.21275/art2020906.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Byun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, nr 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Hongsong, Liang Wang, Jiashi Feng i Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (kwiecień 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rowell, A. L., C. S. Williams i D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine &amp Science in Sports &amp Exercise 28, Supplement (maj 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, nr 8 (sierpień 2003): 14. http://dx.doi.org/10.1063/1.1611340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

SAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, nr 01 (styczeń 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.

Pełny tekst źródła
Streszczenie:
The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.
Style APA, Harvard, Vancouver, ISO itp.
9

Haitjema, Henk M., i Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, nr 1 (30.11.2015): 1. http://dx.doi.org/10.1111/gwat.12386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

AYAKO, Yagi, Hiroshi TAKIMOTO, Chusei FUJIWARA, Atsushi INAGAKI, Yasushi FUJIYOSHI i Manabu KANDA. "ESTIMATION OF CIRCUMFERENTIAL VELOCITY FROM OBSERVED RADIAL VELOCITY---Velocity Image Velocimetry(VIV)---". Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 68, nr 4 (2012): I_1783—I_1788. http://dx.doi.org/10.2208/jscejhe.68.i_1783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

ROTARU, Constantin. "NUMERICAL SOLUTIONS FOR COMBUSTION WAVE VELOCITY". SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, nr 1 (8.10.2019): 184–93. http://dx.doi.org/10.19062/2247-3173.2019.21.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Roh, Young-Sin, Byungman Yoon i Kwonkyu Yu. "Estimatation of Mean Velocity from Surface Velocity". Journal of Korea Water Resources Association 38, nr 11 (1.11.2005): 917–25. http://dx.doi.org/10.3741/jkwra.2005.38.11.917.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

McDermott, G. "Velocity index factor sensitivity to velocity distribution". Australasian Journal of Water Resources 12, nr 3 (styczeń 2008): 205–22. http://dx.doi.org/10.1080/13241583.2008.11465348.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Hill, Reginald J. "Pressure–velocity–velocity statistics in isotropic turbulence". Physics of Fluids 8, nr 11 (listopad 1996): 3085–93. http://dx.doi.org/10.1063/1.869082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Fomel, Sergey. "Time‐migration velocity analysis by velocity continuation". GEOPHYSICS 68, nr 5 (wrzesień 2003): 1662–72. http://dx.doi.org/10.1190/1.1620640.

Pełny tekst źródła
Streszczenie:
Time‐migration velocity analysis can be performed by velocity continuation, an incremental process that transforms migrated seismic sections according to changes in the migration velocity. Velocity continuation enhances residual normal moveout correction by properly taking into account both vertical and lateral movements of events on seismic images. Finite‐difference and spectral algorithms provide efficient practical implementations for velocity continuation. Synthetic and field data examples demonstrate the performance of the method and confirm theoretical expectations.
Style APA, Harvard, Vancouver, ISO itp.
16

Suzuki, Takahiko. "Angular velocity sensor and angular velocity detector". Journal of the Acoustical Society of America 123, nr 1 (2008): 19. http://dx.doi.org/10.1121/1.2832822.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Dong, Li-yun, Xu-dan Weng i Qing-ding Li. "Velocity anticipation in the optimal velocity model". Journal of Shanghai University (English Edition) 13, nr 4 (30.07.2009): 327–32. http://dx.doi.org/10.1007/s11741-009-0415-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Smith, A. T. "Velocity coding: Evidence from perceived velocity shifts". Vision Research 25, nr 12 (styczeń 1985): 1969–76. http://dx.doi.org/10.1016/0042-6989(85)90021-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Barron, J. L., R. E. Mercer, X. Chen i P. Joe. "3D velocity from 3D Doppler radial velocity". International Journal of Imaging Systems and Technology 15, nr 3 (2005): 189–98. http://dx.doi.org/10.1002/ima.20048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Busse, Bret, Gregg Taylor, Kiran Tamvada i Kais Al-Rawi. "Terminal Velocity". Civil Engineering Magazine 91, nr 1 (styczeń 2021): 56–61. http://dx.doi.org/10.1061/ciegag.0001555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

IOKA, Seiichiro. "Groundwater Velocity". Journal of Japanese Association of Hydrological Sciences 51, nr 3 (25.12.2021): 65–66. http://dx.doi.org/10.4145/jahs.51.65.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Baker, D. N., T. A. Fritz i P. A. Bernhardt. "Plasmoid Velocity". Science 243, nr 4892 (10.02.1989): 713. http://dx.doi.org/10.1126/science.243.4892.713.d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Divall, Colin. "Civilising Velocity". Journal of Transport History 32, nr 2 (grudzień 2011): 164–91. http://dx.doi.org/10.7227/tjth.32.2.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Rogerson, S. "Escape velocity". Power Engineer 18, nr 6 (2004): 16. http://dx.doi.org/10.1049/pe:20040603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Baker, D. N., T. A. Fritz i P. A. Bernhardt. "Plasmoid Velocity". Science 243, nr 4892 (10.02.1989): 713. http://dx.doi.org/10.1126/science.243.4892.713-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Herbert, Steven, i Terrence Toepker. "Terminal velocity". Physics Teacher 37, nr 2 (luty 1999): 96–97. http://dx.doi.org/10.1119/1.880189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Maerfeld, Charles, Michel Josserand i Claude Gragnolati. "Velocity hydrophone". Journal of the Acoustical Society of America 79, nr 4 (kwiecień 1986): 1204. http://dx.doi.org/10.1121/1.393717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bjørne, Elias, Edmund F. Brekke, Torleiv H. Bryne, Jeff Delaune i Tor Arne Johansen. "Globally stable velocity estimation using normalized velocity measurement". International Journal of Robotics Research 39, nr 1 (25.11.2019): 143–57. http://dx.doi.org/10.1177/0278364919887436.

Pełny tekst źródła
Streszczenie:
The problem of estimating velocity from a monocular camera and calibrated inertial measurement unit (IMU) measurements is revisited. For the presented setup, it is assumed that normalized velocity measurements are available from the camera. By applying results from nonlinear observer theory, we present velocity estimators with proven global stability under defined conditions, and without the need to observe features from several camera frames. Several nonlinear methods are compared with each other, also against an extended Kalman filter (EKF), where the robustness of the nonlinear methods compared with the EKF are demonstrated in simulations and experiments.
Style APA, Harvard, Vancouver, ISO itp.
29

Chanson, Hubert. "Velocity measurements within high velocity air-water jets". Journal of Hydraulic Research 31, nr 3 (maj 1993): 365–82. http://dx.doi.org/10.1080/00221689309498832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Orphal, D. L., i C. E. Anderson. "The dependence of penetration velocity on impact velocity". International Journal of Impact Engineering 33, nr 1-12 (grudzień 2006): 546–54. http://dx.doi.org/10.1016/j.ijimpeng.2006.09.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Ihara, Tomonori, Hiroshige Kikura i Yasushi Takeda. "Ultrasonic velocity profiler for very low velocity field". Flow Measurement and Instrumentation 34 (grudzień 2013): 127–33. http://dx.doi.org/10.1016/j.flowmeasinst.2013.10.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Blanford, Thomas E., Daniel C. Brown i Richard J. Meyer. "Velocity estimation using a compact correlation velocity log". Journal of the Acoustical Society of America 153, nr 3_supplement (1.03.2023): A304. http://dx.doi.org/10.1121/10.0018939.

Pełny tekst źródła
Streszczenie:
Unmanned underwater vehicles require bottom-referenced acoustic navigation aids to maintain long-term positional accuracy without surfacing. When these platforms are small, they create new design constraints for acoustic navigation aids because of the limited available space and power. Traditional acoustic navigation techniques, such as Doppler Velocity Logs, are unsuitable for use on small platforms because of the power required to maintain adequate signal to noise ratio when they are scaled in size. A compact correlation velocity log (CVL) is an alternative approach that can meet the power, space, and accuracy requirements for an acoustic navigation aid on such platforms. This device uses a single projector, a sparse receive array, and estimates platform motion using a multi-dimensional fitting algorithm over an ensemble of 3 or more pings. This presentation will discuss the theory of operation, simulation, and experimental results for a 300 kHz compact CVL that is 4 × 8 cm2. [The authors want to acknowledge Lockheed Martin Rotary and Mission Systems for their financial support of this work.]
Style APA, Harvard, Vancouver, ISO itp.
33

Guglielmi, Anatol, Boris Klain i Alexander Potapov. "On the group velocity of whistling atmospherics". Solar-Terrestrial Physics 7, nr 4 (20.12.2021): 67–70. http://dx.doi.org/10.12737/stp-74202106.

Pełny tekst źródła
Streszczenie:
The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.
Style APA, Harvard, Vancouver, ISO itp.
34

Guo, Yong Ming. "Computer Modeling of Extrusion by the Rigid-Plastic Hybrid Element Method". Materials Science Forum 505-507 (styczeń 2006): 703–8. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.703.

Pełny tekst źródła
Streszczenie:
In this paper, a rigid-plastic hybrid element method is formulated, which is a mixed approach of the rigid-plastic domain-BEM and the rigid-plastic FEM based on the theory of slightly compressible plasticity. Since compatibilities of velocity and velocity's derivative between adjoining boundary elements and finite elements can be met, the velocity and the derivative of velocity can be calculated with the same precision for this hybrid element method. While, the compatibility of the velocity's derivative cannot be met for the rigid-plastic FEMs.
Style APA, Harvard, Vancouver, ISO itp.
35

LI, Zhong. "Effect of velocity on ductility under high velocity forming". Chinese Journal of Mechanical Engineering (English Edition) 20, nr 02 (2007): 32. http://dx.doi.org/10.3901/cjme.2007.02.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Browne, Rodrigo Alberto Vieira, Marcelo Magalhães Sales, Rafael da Costa Sotero, Ricardo Yukio Asano, José Fernando Vila Nova de Moraes, Jônatas de França Barros, Carmen Sílvia Grubert Campbell i Herbert Gustavo Simões. "Critical velocity estimates lactate minimum velocity in youth runners". Motriz: Revista de Educação Física 21, nr 1 (marzec 2015): 1–7. http://dx.doi.org/10.1590/s1980-65742015000100001.

Pełny tekst źródła
Streszczenie:
In order to investigate the validity of critical velocity (CV) as a noninvasive method to estimate the lactate minimum velocity (LMV), 25 youth runners underwent the following tests: 1) 3,000m running; 2) 1,600m running; 3) LMV test. The intensity of lactate minimum was defined as the velocity corresponding to the lowest blood lactate concentration during the LMV test. The CV was determined using the linear model, defined by the inclination of the regression line between distance and duration in the running tests of 1,600 and 3,000m. There was no significant difference (p=0.3055) between LMV and CV. In addition, both protocols presented a good agreement based on the small difference between means and the narrow levels of agreement, as well as a standard error of estimation classified as ideal. In conclusion, CV, as identified in this study, may be an alternative for noninvasive identification of LMV.
Style APA, Harvard, Vancouver, ISO itp.
37

Esquivel, Alejandro, i A. Lazarian. "Velocity Centroids as Tracers of the Turbulent Velocity Statistics". Astrophysical Journal 631, nr 1 (20.09.2005): 320–50. http://dx.doi.org/10.1086/432458.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zaroubi, S., E. Branchini, Y. Hoffman i L. N. Da Costa. "Consistent values from density-density and velocity-velocity comparisons". Monthly Notices of the Royal Astronomical Society 336, nr 4 (11.11.2002): 1234–46. http://dx.doi.org/10.1046/j.1365-8711.2002.05861.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Avellaneda, M., R. Ryan i E. Weinan. "PDFs for velocity and velocity gradients in Burgers’ turbulence". Physics of Fluids 7, nr 12 (grudzień 1995): 3067–71. http://dx.doi.org/10.1063/1.868683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Franca, M. J., i U. Lemmin. "Eliminating velocity aliasing in acoustic Doppler velocity profiler data". Measurement Science and Technology 17, nr 2 (4.01.2006): 313–22. http://dx.doi.org/10.1088/0957-0233/17/2/012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Khatib, Rémi, i Marialore Sulpizi. "Sum Frequency Generation Spectra from Velocity–Velocity Correlation Functions". Journal of Physical Chemistry Letters 8, nr 6 (8.03.2017): 1310–14. http://dx.doi.org/10.1021/acs.jpclett.7b00207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

JUNGE, KENNETH. "Velocity concatenation and velocity as rate of position dissimilation". Scandinavian Journal of Psychology 28, nr 2 (czerwiec 1987): 144–49. http://dx.doi.org/10.1111/j.1467-9450.1987.tb00748.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Strumpf, C., M. L. Braunstein, C. W. Sauer i G. J. Andersen. "Velocity difference and velocity ratio in structure-from-motion". Journal of Vision 1, nr 3 (15.03.2010): 330. http://dx.doi.org/10.1167/1.3.330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wang, Hao, Ye Li, Wei Wang, Min Fu i Rong Huang. "Optimal velocity model with dual boundary optimal velocity function". Transportmetrica B: Transport Dynamics 5, nr 2 (21.03.2016): 211–27. http://dx.doi.org/10.1080/21680566.2016.1159149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

MALMSTRÖM, TOR G., ALLAN T. KIRKPATRICK, BRIAN CHRISTENSEN i KEVIN D. KNAPPMILLER. "Centreline velocity decay measurements in low-velocity axisymmetric jets". Journal of Fluid Mechanics 346 (10.09.1997): 363–77. http://dx.doi.org/10.1017/s0022112097006368.

Pełny tekst źródła
Streszczenie:
The streamwise velocity profiles of low-velocity isothermal axisymmetric jets from nozzles of different diameters were measured and compared with previous experimental data. The objective of the measurements was to examine the dependence of the diffusion of the jet on the outlet conditions. As the outlet velocity was decreased, the centreline velocity decay coefficient began to decrease at an outlet velocity of about 6 m s−1.
Style APA, Harvard, Vancouver, ISO itp.
46

Rahmani, Abderrehmane, Fabrice Viale, Georges Dalleau i Jean-René Lacour. "Force/velocity and power/velocity relationships in squat exercise". European Journal of Applied Physiology 84, nr 3 (12.03.2001): 227–32. http://dx.doi.org/10.1007/pl00007956.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Dong, Li-yun, i Qing-xun Meng. "Effect of relative velocity on the optimal velocity model". Journal of Shanghai University (English Edition) 9, nr 4 (sierpień 2005): 283–85. http://dx.doi.org/10.1007/s11741-005-0037-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sreenath, B. N., Kenath Arun i C. Sivaram. "Is there lower limit to velocity or velocity change?" Astrophysics and Space Science 345, nr 1 (17.01.2013): 209–11. http://dx.doi.org/10.1007/s10509-013-1364-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Tian, Lin, Gerald M. Heymsfield, Anthony C. Didlake, Stephen Guimond i Lihua Li. "Velocity–Azimuth Display Analysis of Doppler Velocity for HIWRAP". Journal of Applied Meteorology and Climatology 54, nr 8 (sierpień 2015): 1792–808. http://dx.doi.org/10.1175/jamc-d-14-0054.1.

Pełny tekst źródła
Streszczenie:
AbstractThe velocity–azimuth display (VAD) analysis technique established for ground-based scanning radar is applied to the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). The VAD technique provides a mean vertical profile of the horizontal winds for each complete conical scan of the HIWRAP radar. One advantage of this technique is that it has shown great value for data assimilation and for operational forecasts. Another advantage is that it is computationally inexpensive, which makes it suitable for real-time retrievals. The VAD analysis has been applied to the HIWRAP data collected during NASA’s Genesis and Rapid Intensification Processes (GRIP) mission. The traditional dual-Doppler analysis for deriving wind fields in the nadir plane is also presented and is compared with the VAD analysis. The results show that the along-track winds from the VAD technique and dual-Doppler analysis agree in general. The VAD horizontal winds capture the mean vortex structure of two tropical cyclones, and they are in general agreement with winds from nearby dropsondes. Several assumptions are made for the VAD technique. These assumptions include a stationary platform for each HIWRAP scan and constant vertical velocity of the hydrometeors along each complete scan. As a result, the VAD technique can produce appreciable errors in regions of deep convection such as the eyewall, whereas in stratiform regions the retrieval errors are minimal. Despite these errors, the VAD technique can still adequately capture the larger-scale structure of the hurricane vortex given a sufficient number of flight passes over the storm.
Style APA, Harvard, Vancouver, ISO itp.
50

Lazarian, A., i A. Esquivel. "Statistics of Velocity from Spectral Data: Modified Velocity Centroids". Astrophysical Journal 592, nr 1 (26.06.2003): L37—L40. http://dx.doi.org/10.1086/377427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii