Gotowa bibliografia na temat „VELOCITIE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „VELOCITIE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "VELOCITIE"
Deconto-Machado, A., R. A. Riffel, G. S. Ilha, S. B. Rembold, T. Storchi-Bergmann, R. Riffel, J. S. Schimoia i in. "Ionised gas kinematics in MaNGA AGN". Astronomy & Astrophysics 659 (marzec 2022): A131. http://dx.doi.org/10.1051/0004-6361/202140613.
Pełny tekst źródłaWalker, G. A. H., J. Amor, S. Yang i B. Campbell. "Precise Radial Velocities and Radial Velocity Standards". Symposium - International Astronomical Union 111 (1985): 587–89. http://dx.doi.org/10.1017/s0074180900079547.
Pełny tekst źródłaEhlen, Georg J., Hai Feng Wang i Dieter M. Herlach. "Concentration Dependent Growth Velocities in Undercooled Al-Rich Al-Ni Alloy Systems". Materials Science Forum 790-791 (maj 2014): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.485.
Pełny tekst źródłaMaybank, SJ. "Rigid velocities compatible with five image velocity vectors". Image and Vision Computing 8, nr 1 (luty 1990): 18–23. http://dx.doi.org/10.1016/0262-8856(90)90051-6.
Pełny tekst źródłaToldi, John L. "Velocity analysis without picking". GEOPHYSICS 54, nr 2 (luty 1989): 191–99. http://dx.doi.org/10.1190/1.1442643.
Pełny tekst źródłaWendt, Anke S., Monzurul Alam i Joao Paulo Castagnoli. "Sand injectite mapping using a resistivity-velocity transform function". Leading Edge 40, nr 3 (marzec 2021): 202–7. http://dx.doi.org/10.1190/tle40030202.1.
Pełny tekst źródłaDu, Xue Jing, i Jin Peng Li. "Simulation of Pedestrian Colliding with Microbus Windshield". Key Engineering Materials 572 (wrzesień 2013): 574–77. http://dx.doi.org/10.4028/www.scientific.net/kem.572.574.
Pełny tekst źródłaHerman, Przemyslaw, i Krzysztof Kozlowski. "Velocity tracking control algorithm in terms of quasi-velocities". IFAC Proceedings Volumes 42, nr 13 (2009): 599–604. http://dx.doi.org/10.3182/20090819-3-pl-3002.00104.
Pełny tekst źródłaCox, B. E., P. L. A. Winthaegen, D. J. Verschuur i K. Roy-Chowdhury. "Common focus point velocity estimation for laterally varying velocities". First Break 19, nr 2 (luty 2001): 75–83. http://dx.doi.org/10.1046/j.0263-5046.2001.00140.x.
Pełny tekst źródłaBlias, Emil. "Stacking velocities in the presence of overburden velocity anomalies". Geophysical Prospecting 57, nr 3 (maj 2009): 323–41. http://dx.doi.org/10.1111/j.1365-2478.2008.00750.x.
Pełny tekst źródłaRozprawy doktorskie na temat "VELOCITIE"
FRUSTAGLI, GIUSEPPE. "Exoplanets Characterization: from Ultra-short Period Planets to Ultra-hot Jupiters Atmospheres". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/311363.
Pełny tekst źródłaThe discovery of planets orbiting around stars other than the Sun is by far the most relevant event in the galactic astrophysics of the last two decades. Since the discovery of the first exoplanet in 1995, the number of exoplanets discovered grew fast and we currently know more than 4,000 exoplanets, very diverse in dimension and distance from parent stars and also in factors as temperature, mass, density. The diversity of exoplanets is a key factor to understand more about the formation of planetary systems and in particular the formation of the Solar System and our planet, the Earth. This is the reason why observational exoplanetary science is currently focusing on two different fields: i) the characterization of exoplanets, trying to determine the radius, the mass, the density and the bulk composition of the objects observed, and ii) the characterization of their atmospheres, establishing the elements that the atmosphere of a planet supports and the mechanisms that drive the atmospheric processes. Characterization of Exoplanets Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. The method’s strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with RV observations. In this framework, one of the most prolific groups is the HARPS-N Guaranteed Time Observations (GTO) Consortium, that makes use of the high resolution (R = 115,000) and extreme stability of the HARPS-N spectrograph, installed on the Telescopio Nazionale Galileo (TNG), to characterize and discover exoplanets by combining transits and RV methods. As a collaborator of this group, I studied a candidate planet discovered by K2 Campaign 16, HD 80653 b, a super-Earth planet transiting the star on a short period orbit, and used HARPS-N RV data to characterize it, finding its mass and defining its bulk density. It belongs to a peculiar class of exoplanets: the Ultra-Short Period (USP) planets, objects that orbit their stars with extremely short periods, smaller than about 2 Earth Radii and compositions similar to that of the Earth. Characterization of Atmospheres Ultra-hot Jupiters are excellent laboratories for the study of exoplanetary atmospheres. Sodium, due to its large cross-section and to the fact it is in the wavelength range of most optical spectrographs, is the most studied element, but new interesting features begin to be analyzed. Lines of iron, titanium, magnesium, but also chromium, scandium and yttrium have been found in the high resolution transmission spectra of the hottest planets. The two ultra-hot Jupiters KELT-9 b and KELT-20 b were observed in the framework of the Global architecture of Planetary Systems (GAPS) Atmosphere program. I explored more in detail the transit spectroscopy method, creating two different routines for atmosphere characterization. The first routine follows previous approaches for high-resolution spectroscopy, but is able to detect weak spectral lines such as those of magnesium, by co-adding the lines in the velocities space. Using this procedure, I analyzed the high-resolution spectra of KELT-9 b and KELT-20 b, obtaining their transmission spectra and detecting significant absorption for Na, H, Fe and Mg I. The second routine extracts the high-resolution transmission spectra of exoplanets and cross-correlates them with theoretical transmission spectra models. I analyzed the high-resolution spectra of KELT-20 b and with the cross-correlation technique I confirmed previous detections of Fe I, Fe II, and Na I.
Kennedy, Michael David Joseph. "A comparison of critical velocity estimates to actual velocities in predicting simulated rowing performance". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq22611.pdf.
Pełny tekst źródłaHashim, Muazzam Ali. "Investigating subsurface heterogeneities and its impact on the variation in interval velocities : implications to velocity modelling in the Bredasdorp basin". Thesis, University of the Western Cape, 2015. http://hdl.handle.net/11394/5328.
Pełny tekst źródłaVelocity modelling forms an integral part of the seismic interpretation process initially completed in two-way time. In order for a representative depth conversion, it is obligatory to construct a velocity model that serves the bridge between velocity and respective two-way time. This study deals with the investigation of subsurface heterogeneities and its impact on the variation of velocities. Interpretation of time domain reflection data results in one or more seismic horizons, however these horizons should represent the variation in subsurface geology as a result of acoustically different layers displaying varying reflection amplitudes. The purpose of this study was fulfilled by examining the variation of these velocities in relation to the geology and its significance towards building a velocity model. It is evident that complexities, such as an existing heterogeneous subsurface is present in the study area. Using velocities only considered at formation well tops, as a result, does not completely honour the variation in these velocities. The velocity profile as calculated from the sonic log was characterized into zones representing unique velocity trends. The analyses to understand the impact of subsurface heterogeneities on the velocities was completed by the application of seismic facies analysis which entailed the study of the seismic reflector patterns and amplitudes; a study of the lithologies present and the generation of mineral plots using available wireline logs, all of which in close relation to the variation in velocities. The characterized zones, as a result have shown that shaly sediments are typically associated with higher velocities (~2800 – 4600m/s) compared to sandstones of lower densities. Mineral plots however, have also indicated that where quartz minerals were present (specifically zone L), sandstones as a result have shown higher velocities (~4800m/s) as compared to the shales (~3600m/s). These higher velocities are also associated with more organised seismic reflectors with brighter amplitudes and strong contrasts in acoustic impedance as shown by the seismic. Uniform velocities were observed in zones such as zone Ia, typically associated with a low acoustic impedance contrast and minimal variation in its lithological make-up. The integrated investigation of subsurface heterogeneities has shown that velocities vary to a substantial degree as a result of existing subsurface heterogeneities. The variation of these velocities are hence significant enough that it should be considered when constructing a velocity model which aims to respect the geology of the study area. The result of understanding the relation between the geology and resultant velocities may prove to advance the results of the velocity model in a manner that it is more complete and representative of the subsurface.
Van, Riper Steven G. "Investigation of increased forward flight velocities of helicopters using second harmonic control and reverse velocity rotor concept". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FVanRiper.pdf.
Pełny tekst źródłaThesis advisor(s): E. Roberts Wood, Raymond Shreeve. Includes bibliographical references (p. 145-146). Also available online.
Allen, G. F. "Interval velocities from moveout velocities over a seismic reflection survey area". Thesis, University of Leicester, 1985. http://hdl.handle.net/2381/33751.
Pełny tekst źródłaMarshall, Stephen P. "Measuring laminar burning velocities". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:81ea0ed8-3abd-4192-86ef-67bd5581c325.
Pełny tekst źródłaKratochvíl, Pavel. "Analýza seismického rychlostního pole". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220661.
Pełny tekst źródłaLewis, Braxton V. "Effects of 0[degree] cross draft velocity and the presence of a table and manikin on midline velocities in front of a rectangular capture hood". Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11147.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains ix, 74 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 53-55).
Seabroke, George Michael. "Probing the Milky Way galaxy through thick and thin (discs and halo) with the CORrelation RAdial VELocities (CORAVEL) and the RAdial velocity experiment (RAVE) surveys". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612308.
Pełny tekst źródłaEhwald, Lena Elisa. "Seasonal Velocities on Nordenskiöldbreen, Svalbard". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296682.
Pełny tekst źródłaKlimatuppvärmningen bidrar till att glaciärer blir tunnare och smälter snabbare. Ett varmare klimat är också orsaken till att snöfall ökar då varmare luft kan transportera mer fuktighet. Konsekvensen blir att glaciärer i arktiska områden får brantare sluttningar. Brantare sluttningar leder sedan till att glaciärer rör sig snabbare. Om glaciärer plötsligt rör sig snabbare uppstår möjligheten att havsnivån också stiger snabbare. Uppsatsen undersöker is-hastigheten från Nordenskiöldbreen. Nordenskiöldbreen är en glaciär på Spetsbergen, Svalbard som går ut i Adolfbukta innerst Billesjorden. Hastigheten uppmättes med hjälp av 13 GPS-stationer på glaciärens yta, placerade mellan 800 och 1200 meter över havsnivån. GPS-stationerna är utvecklade av Institut för Marin- och Atmosfär-undersökningar i Utrecht, Holland (IMAU) för att mäta glaciärens hastighet året runt till låga kostnader. Sedan 1997 har Institutionen för geovetenskaper vid Uppsala Universitet utfört flera mätningar på Nordenskiöldbreen för att mäta massbalans, isrörelse och miljöförändringar. Massbalans mätningar har visat att glaciären fick brantare sluttningar över den senaste tio-års perioden. Uppsatsen analyserar trenden för isrörelse vid Nordenskiöldbreen över de senaste tio åren. Dessutom är resultanterna jämförda med massbalans-analyser och temperaturmätningar från Svalbard Flygplats. Jämförelsen hjälper att förstå hur glaciärens system reagerar på klimatförändringar. De uppskattade hastighetsresultaten visar att Nordenskiöldbreen rör sig med en medelhastighet av 45-53 meter per år. Isrörelse kan nå upp till 80 meter per år och är främst förekommande under juli månad när temperaturen är hög. Detta producerar då mer smältvatten vilket driver upp vattentrycket vid glaciärens botten och leder till basal glidning.
Książki na temat "VELOCITIE"
Andrew, Joron, red. Terminal velocities. Berkeley CA: Pantograph Press, 1993.
Znajdź pełny tekst źródłaRobinson, Ron. Airgun velocities! Wyd. 2. [Albuquerque, N.M.] (700 Monte Alto N.E., Albuquerque 87123): R. Robinson, 1990.
Znajdź pełny tekst źródłaDavis, Philip A. G., i Latham David W, red. Stellar radial velocities. Schenectady, N.Y: L. Davis Press, 1985.
Znajdź pełny tekst źródłaKoontz, Dean R. Velocity. London: Harper, 2011.
Znajdź pełny tekst źródłaVelocity. London: Scholastic, 2015.
Znajdź pełny tekst źródłaKrygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.
Znajdź pełny tekst źródłaKoontz, Dean R. Velocity. New York: Bantam Books, 2005.
Znajdź pełny tekst źródłaKrygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.
Znajdź pełny tekst źródłaVelocity. New York: Bantam Books, 2012.
Znajdź pełny tekst źródłaMcCloy, Kristin. Velocity. New York: Random House, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "VELOCITIE"
Walker, G. A. H., J. Amor, S. Yang i B. Campbell. "Precise Radial Velocities and Radial Velocity Standards". W Calibration of Fundamental Stellar Quantities, 587–89. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5456-4_81.
Pełny tekst źródłaXu, Liu-Jun, i Ji-Ping Huang. "Theory for Thermal Geometric Phases: Exceptional Point Encirclement". W Transformation Thermotics and Extended Theories, 291–304. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_21.
Pełny tekst źródłaCordier, Jean-Pierre. "Velocities in Seismic Reflection. Definitions. Principles of Velocity Analysis". W Velocities in Reflection Seismology, 47–58. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_6.
Pełny tekst źródłaCordier, Jean-Pierre. "Basic Ideas on the Propagation of Seismic Waves". W Velocities in Reflection Seismology, 1–5. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_1.
Pełny tekst źródłaCordier, Jean-Pierre. "Calculation of Interval Velocities". W Velocities in Reflection Seismology, 101–14. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_10.
Pełny tekst źródłaCordier, Jean-Pierre. "Velocity Analysis. Principles. Examples". W Velocities in Reflection Seismology, 115–25. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_11.
Pełny tekst źródłaCordier, Jean-Pierre. "Choice of Parameters in Velocity Analysis". W Velocities in Reflection Seismology, 126–28. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_12.
Pełny tekst źródłaCordier, Jean-Pierre. "Other Presentations of Velocity Analyses. Analyses along Horizons. Constant Velocity Stacks. Rapid Determination of Interval Velocities: G.S.I. (Geophysical Service Inc.) Graphical Method". W Velocities in Reflection Seismology, 129–34. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_13.
Pełny tekst źródłaCordier, Jean-Pierre. "Interpretation and Utilisation of Velocity Analyses. Accuracy Required and Causes of Inaccuracy. Advice on Positioning and Interpretation of Velocity Analyses". W Velocities in Reflection Seismology, 135–54. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_14.
Pełny tekst źródłaCordier, Jean-Pierre. "Influence of the “Velocity” Parameter on the Process of Migration of Seismic Sections". W Velocities in Reflection Seismology, 155–67. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3641-1_15.
Pełny tekst źródłaStreszczenia konferencji na temat "VELOCITIE"
Øverås, R., V. Kalashnikova, S. Guidard i I. Meisingset. "Construction Technique Of High Resolution Velocity Field - New Attribute For Seismic Interpretation". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800001.
Pełny tekst źródłaRudling, C. J., A. Riaz i J. Smith. "Azimuthal Anisotropy Resolved By Tilted Orthorhombic Tomography". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800002.
Pełny tekst źródłaMeisingset, I., J. Hubred i D. Krasova. "Understanding Delta Anisotropy On A Regional Scale". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800003.
Pełny tekst źródłaHart, M. J., J. Sheng, S. Baldock i J. Mao. "FWI Velocity Model Building Experiences". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800004.
Pełny tekst źródłaLewis, O. J., S. Way, G. Apeland, P. Smith, H. Veire, J. R. Granli, L. M. Moskvil i N. Stevens. "Earth Model Building With Full-Waveform Inversion - A Case Study From A Shallow Reservoir In The Barents Sea". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800005.
Pełny tekst źródłaGupta, S., A. Cooke, M. Steiger-Jarvis, J. Bailey i A. Sellars. "Optimizing The Model Building Approach Using Full-Waveform Inversion And Multilayer Reflection Tomography - A North Sea Workflow". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800006.
Pełny tekst źródłaJones, I. F., J. Singh, P. Cox, M. Warner, C. Hawke, D. Harger i S. Greenwood. "High Resolution Velocity Estimation Using Refraction And Reflection Fwi - The Fortuna Region, Offshore Equatorial Guinea". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800007.
Pełny tekst źródłaRoth, T., T. Nangoo, N. Shah, M. Riede, C. Henke i M. Warner. "Improving Seismic Image With High Resolution Velocity Model From AWI Starting With 1D Initial Model - Case Study Barents Sea". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800008.
Pełny tekst źródłaMeisingset, I., J. Hubred i D. Krasova. "High Quality Regional Velocity Modelling For Depth Conversion". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800009.
Pełny tekst źródłaFonseca, J. S., L. Teixeira, A. Maul, P. Barros, F. Borges, J. Boechat i M. González. "Modelling Geological Layers Into New Velocity Models For Seismic Migration Process - A Brazilian Pre-Salt Case". W First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800010.
Pełny tekst źródłaRaporty organizacyjne na temat "VELOCITIE"
Gaines, Roger, Stephen Sanborn, William McAnally i Christopher Wallen. Mississippi River Adaptive Hydraulics model development and evaluation, Commerce to New Madrid, Missouri, Reach. Engineer Research and Development Center (U.S.), styczeń 2020. http://dx.doi.org/10.21079/11681/39519.
Pełny tekst źródłaEckert, Richard. PR-186-184509-R01 Guideline for Erosional Velocity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 2020. http://dx.doi.org/10.55274/r0011655.
Pełny tekst źródłaMcInerney, Michael, Matthew Brenner, Sean Morefield, Robert Weber i John Carlyle. Acoustic nondestructive testing and measurement of tension for steel reinforcing members. Engineer Research and Development Center (U.S.), październik 2021. http://dx.doi.org/10.21079/11681/42181.
Pełny tekst źródłaMcKnight, C., David May i Keaton Jones. Numerical analysis of dike effects on the Mississippi River using a two-dimensional Adaptive Hydraulics model (AdH). Engineer Research and Development Center (U.S.), listopad 2022. http://dx.doi.org/10.21079/11681/46120.
Pełny tekst źródłaRahmani, Mehran, i Manan Naik. Structural Identification and Damage Detection in Bridges using Wave Method and Uniform Shear Beam Models: A Feasibility Study. Mineta Transportation Institute, luty 2021. http://dx.doi.org/10.31979/mti.2021.1934.
Pełny tekst źródłaRatigan. L52293 Brine String Integrity Survey and Model Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2009. http://dx.doi.org/10.55274/r0010206.
Pełny tekst źródłaRaubenheimer, Britt. Swashzone Fluid Velocities. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada627488.
Pełny tekst źródłaRaubenheimer, Britt. Swashzone Fluid Velocities. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2003. http://dx.doi.org/10.21236/ada630081.
Pełny tekst źródłaRaubenheimer, Britt. Swashzone Fluid Velocities. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2004. http://dx.doi.org/10.21236/ada630116.
Pełny tekst źródłaZiegler, Nancy, Nicholas Webb, Adrian Chappell i Sandra LeGrand. Scale invariance of albedo-based wind friction velocity. Engineer Research and Development Center (U.S.), maj 2021. http://dx.doi.org/10.21079/11681/40499.
Pełny tekst źródła