Gotowa bibliografia na temat „Vehicle”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Vehicle”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Vehicle"
Vasiljević, S., B. Aleksandrović, J. Glišović i M. Maslać. "Regenerative braking on electric vehicles: working principles and benefits of application". IOP Conference Series: Materials Science and Engineering 1271, nr 1 (1.12.2022): 012025. http://dx.doi.org/10.1088/1757-899x/1271/1/012025.
Pełny tekst źródłaBabu, Md Ashraful, Md Mortuza Ahmmed, Mir Kaosar Ahamed i M. Mostafizur Rahman. "A Cluster Based Feasible Time Interval for Tracking Lost or Stolen Vehicle". AIUB Journal of Science and Engineering (AJSE) 21, nr 1 (12.10.2022): 63–67. http://dx.doi.org/10.53799/ajse.v21i1.201.
Pełny tekst źródłaKim, JongBae. "Deep Learning-Based Vehicle Type and Color Classification to Support Safe Autonomous Driving". Applied Sciences 14, nr 4 (17.02.2024): 1600. http://dx.doi.org/10.3390/app14041600.
Pełny tekst źródłaYin, Yanna, Huiying Wen, Lu Sun i Wei Hou. "Study on the Influence of Road Geometry on Vehicle Lateral Instability". Journal of Advanced Transportation 2020 (7.10.2020): 1–15. http://dx.doi.org/10.1155/2020/7943739.
Pełny tekst źródłaAhirrao, Abhishek, Shantanu Metkar, Abhishek Avhad, Dr Swapnil Awate i Prof Vishal Shinde. "Hybrid Electric AWD Vehicle Kit". International Journal for Research in Applied Science and Engineering Technology 10, nr 11 (30.11.2022): 1566–78. http://dx.doi.org/10.22214/ijraset.2022.47667.
Pełny tekst źródłaGao, Kai, Di Yan, Fan Yang, Jin Xie, Li Liu, Ronghua Du i Naixue Xiong. "Conditional Artificial Potential Field-Based Autonomous Vehicle Safety Control with Interference of Lane Changing in Mixed Traffic Scenario". Sensors 19, nr 19 (27.09.2019): 4199. http://dx.doi.org/10.3390/s19194199.
Pełny tekst źródłaMudda, Avinash, P. Sashi Kiran, Ashish Kumar i Venkata Sreenivas. "Vehicle Allowance System". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 1085–89. http://dx.doi.org/10.22214/ijraset.2023.50169.
Pełny tekst źródłaChen, Xuewen, Huaqing Chen i Huan Xu. "Vehicle Detection Based on Multifeature Extraction and Recognition Adopting RBF Neural Network on ADAS System". Complexity 2020 (6.10.2020): 1–11. http://dx.doi.org/10.1155/2020/8842297.
Pełny tekst źródłaMansour, Ayman M. "Cooperative Multi-Agent Vehicle-to-Vehicle Wireless Network in a Noisy Environment". International Journal of Circuits, Systems and Signal Processing 15 (22.02.2021): 135–48. http://dx.doi.org/10.46300/9106.2021.15.15.
Pełny tekst źródłaLee, Kwan Hyeong. "Improvement in Target Range Estimation and the Range Resolution Using Drone". Electronics 9, nr 7 (13.07.2020): 1136. http://dx.doi.org/10.3390/electronics9071136.
Pełny tekst źródłaRozprawy doktorskie na temat "Vehicle"
Manuzzi, Nicolas. "Autonomous Vehicle and Internet on Vehicles". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9211/.
Pełny tekst źródłaFelixson, Henrik. "Vehicle Ahead Property Estimation in Heavy Duty Vehicles". Thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-108341.
Pełny tekst źródłaRombach, Markus. "Vehicle Speed Estimation for Articulated Heavy-Duty Vehicles". Thesis, Linköpings universitet, Reglerteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152428.
Pełny tekst źródłaMikesell, David Russell. "Portable automated driver for universal road vehicle dynamics testing". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1198722243.
Pełny tekst źródłaRoediger, Micah David. "Exploring human-vehicle communication to balance transportation safety and efficiency: A naturalistic field study of pedestrian-vehicle interactions". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96198.
Pełny tekst źródłaPh. D.
Varnhagen, Scott Julian. "Development of Vehicle Dynamics Control for Wheel-Motored Vehicles". Thesis, University of California, Davis, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3685305.
Pełny tekst źródłaThis dissertation describes a methodology for the vehicle dynamics control of a wheel motored vehicle. All theory is developed assuming that the driver has control of the front wheel steering angle, and that wheel torque is solely generated by independent wheel motors at each corner of the vehicle. Theoretical work is presented for the general case with four independent wheel motors, but can be easily reduced to a situation with only two wheel motors. Indeed, all theory developed in this work is evaluated experimentally on a production automobile converted to be driven by two independent rear wheel motors.
As opposed to directly allocating wheel torques, the proposed philosophy operates in the slip-ratio domain. Doing so helps to prevent excessive tire saturation and allows the system to adapt to changing road surfaces. To that end, this dissertation first proposes a method of estimating slip-ratio utilizing only sensors currently available on modern automobiles. A slip-ratio controller is then developed approximating the disturbance observer structure. This allows the controller to be robust to changing road surface and as a byproduct provide an accurate estimate of longitudinal tire force. Combining the estimated longitudinal tire force with the estimated slip-ratio it is then possible to ascertain some degree of tire saturation. With this in mind, an optimal control allocation problem is proposed which attempts to achieve the desired vehicle dynamics while at the same time minimizing tire saturation.
It is shown experimentally that the proposed control methodology effectively achieves desired vehicle dynamics. In addition, the system adapts its behavior to changing road surfaces resulting in optimal performance regardless of operating conditions.
Sundström, Christofer. "Model Based Vehicle Level Diagnosis for Hybrid Electric Vehicles". Doctoral thesis, Linköpings universitet, Fordonssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105487.
Pełny tekst źródłaRahman, Md Mahbubar. "Two-Echelon Vehicle Routing Problems Using Unmanned Autonomous Vehicles". Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28423.
Pełny tekst źródłaDowd, Garrett E. "Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574861007798385.
Pełny tekst źródłaHarvey, Daniel R. "Willans Line Modeling for Powertrain Analysis and Energy Consumption of Electric Vehicles". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104087.
Pełny tekst źródłaMaster of Science
Developing robust and accurate methods for analyzing electric vehicle energy consumption and powertrain efficiency is of great interest. For the purposes of this paper, powertrain refers to a motor / inverter pair which is coupled to a simple gear reduction for torque multiplication. Many vehicles are designed with motors of varying power and torque capabilities which can present challenges when attempting to effectively compare electric vehicles from different manufacturers. The proposed modeling method presented in this work utilizes public test data to derive detailed vehicle and powertrain information. Vehicle energy consumption is also modeled and compared to net EPA test data. Eight electric vehicles are modeled with each vehicle representing a specific segment of the current electric vehicle market. A bi-directional Willans line is applied to model the propel and brake phases of each electric vehicle over the US certification drive cycles. The bi-directional approach effectively isolates the vehicle powertrain from non-intrinsic losses. From the derived powertrain parameters and modeled energy consumption, the proposed method is deemed accurate and highly useful for translating public test data to detailed vehicle information. Lastly, a sensitivity analysis is presented with the proposed method deemed reasonably resilient to changes in input parameters. The modeling method is most sensitive to changes of powertrain marginal efficiency and vehicle accessory load but constraining these inputs to reasonable ranges for electric vehicles proves sufficient.
Książki na temat "Vehicle"
United States Departmet of the Air Force. Vehicle maintenance management: Motor vehicles. Washington, DC: Dept. of the Air Force, Headquarters US Air Force, 1989.
Znajdź pełny tekst źródłaGreat Britain. Department of Transport. i Great Britain. Government Statistical Service., red. Vehicle licensing statistics: Motor vehicles currently licensed, new registrations, goods vehicle statistics. London: HMSO, 1996.
Znajdź pełny tekst źródłaGreat Britain. Government Statistical Service. i Great Britain. Department ofTransport., red. Vehicle licensing statistics 1993: Motor vehicles currently licensed, new registrations, goods vehicle statistics. London: H.M.S.O., 1994.
Znajdź pełny tekst źródłaIreland. Dept. of Transport. Vehicle testers manual 2004: Light goods vehicles. Dublin: Stationery Office, 2004.
Znajdź pełny tekst źródłaNguyễn, Kim Hưng. The book of three vehicles of Caodaism doctrine: Complete set of the books: grade: Small vehicle, Medium vehicle, Superior vehicle. Hà Nội: Nhà xuá̂t bản Tôn giáo, 2009.
Znajdź pełny tekst źródłaGreat Britain. Department of Transport. i Great Britain Vehicle Inspectorate, red. Vehicle safety recalls: Vehicle recall bulletin. London: Department of Transport, 2003.
Znajdź pełny tekst źródłaVehicle stability. New York: Marcel Dekker, 2004.
Znajdź pełny tekst źródłaVehicle dynamics for commercial vehicles. Warrendale, PA: Society of Automotive Engineers, 2006.
Znajdź pełny tekst źródłaVehicle dynamics for commercial vehicles. Warrendale, PA: Society of Automotive Engineers, 2007.
Znajdź pełny tekst źródłaColberg, Reginald. Vehicle Maintenance Log Book: Vehicle Details and Expenses for All Vehicles, the Vehicle Maintenance Record Book. Independently Published, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Vehicle"
Nowak, Andrzej, Jacek Chmielewski i Sylwia Stawska. "Vehicles and gross vehicle weight". W Bridge Traffic Loading, 11–46. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429318849-2.
Pełny tekst źródłaHoltzapple, Mark. "Vehicle Biofuels vehicle biofuels". W Encyclopedia of Sustainability Science and Technology, 11429–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_871.
Pełny tekst źródłaMecklenbräuker, Christoph, Laura Bernadó, Oliver Klemp, Andreas Kwoczek, Alexander Paier, Moritz Schack, Katrin Sjöberg i in. "Vehicle-to-Vehicle Communications". W Signals and Communication Technology, 577–608. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2315-6_14.
Pełny tekst źródłaI. Meneguette, Rodolfo, Robson E. De Grande i Antonio A. F. Loureiro. "Vehicle-to-Vehicle Communication". W Urban Computing, 79–112. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93332-0_5.
Pełny tekst źródłaHoltzapple, Mark. "Vehicle Biofuels vehicle biofuels". W Transportation Technologies for Sustainability, 1006–32. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5844-9_871.
Pełny tekst źródłaGooch, Jan W. "Vehicle". W Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12464.
Pełny tekst źródłaWeik, Martin H. "vehicle". W Computer Science and Communications Dictionary, 1884. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20708.
Pełny tekst źródłaGooch, Jan W. "Vehicle". W Encyclopedic Dictionary of Polymers, 931. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15076.
Pełny tekst źródłaKriescher, Michael, Sebastian Scheibe i Tilo Maag. "Development of the Safe Light Regional Vehicle (SLRV): A Lightweight Vehicle Concept with a Fuel Cell Drivetrain". W Small Electric Vehicles, 179–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65843-4_14.
Pełny tekst źródłaGao, Yimin. "Vehicle Vehicle Dynamics vehicle dynamic(s) and Performance". W Encyclopedia of Sustainability Science and Technology, 11481–502. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_799.
Pełny tekst źródłaStreszczenia konferencji na temat "Vehicle"
Vantsevich, Vladimir, David Gorsich, Jesse Paldan, Jordan Whitson, Brian Butrico i Oleg Sapunkov. "Vehicle Dynamic Factor Characterized by Actual Velocity and Combined Influence of the Transmission and Driveline System". W 11th Asia-Pacific Regional Conference of the ISTVS. International Society for Terrain-Vehicle Systems, 2022. http://dx.doi.org/10.56884/arao9883.
Pełny tekst źródłaKaminski, Meghan, i Zackery Borton. "Development, Application, and Implementation of Passenger Vehicle Wind Averaged Drag for Vehicle Development". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2532.
Pełny tekst źródłaVigil, Cole Mackenzie, Omar Kaayal i Alexander Szepelak. "Quantifying the Deceleration of Various Electric Vehicles Utilizing Regenerative Braking". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0623.
Pełny tekst źródłaBrar, Bavneet S., i Ravi Tangirala. "Re-Examination of NHTSA’s Research Moving Deformable Barrier Front Oblique Impacts With Vehicle to Vehicle Crashes Using FE Models". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65198.
Pełny tekst źródłaYoshizawa, Shoichi, Yoichiro Tanaka, Masahiro Ohyamaguchi, Kenji Maruyama, Satoshi Kitazaki, Kouichi Kurodo, Shinpei Sato, Tetsu Obata, Yuumi Hirokawa i Masayasu Iwasaki. "Development of Display Information and Telematics Systems for a Reliable and Attractive Electric Vehicle". W 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7215.
Pełny tekst źródłaJawad, Saad A. W. "Compatibility Analysis of Vehicle-to-Vehicle in Head-On Collision". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1187.
Pełny tekst źródłaYee, Ryan, Ellick Chan, Bin Cheng i Gaurav Bansal. "Collaborative Perception for Automated Vehicles Leveraging Vehicle-to-Vehicle Communications". W 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018. http://dx.doi.org/10.1109/ivs.2018.8500388.
Pełny tekst źródłaGupta, Neha G., Rajesh D. Thakre i Yogesh A. Suryawanshi. "VANET based prototype vehicles model for vehicle to vehicle communication". W 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2017. http://dx.doi.org/10.1109/iceca.2017.8203672.
Pełny tekst źródłaYadav, Amrendra Singh, Aditi Tripathi, Ashutosh Kumar i Dharmendra Singh Kushwaha. "Vehicle-to-Vehicle Energy Trading Blockchain System for Electric Vehicles". W 2024 16th International Conference on Knowledge and Smart Technology (KST). IEEE, 2024. http://dx.doi.org/10.1109/kst61284.2024.10499695.
Pełny tekst źródłaDoğru, Abdulhamid Han, Buse Yildirim i Rafet Can Umutlu. "Torque Vectoring on Front Wheel Drive Vehicle with Hub Motors". W 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.036.
Pełny tekst źródłaRaporty organizacyjne na temat "Vehicle"
Liu, Yongyang, Anye Zhou, Yu Wang i Srinivas Peeta. Non-connected Vehicle Detection Using Connected Vehicles. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317646.
Pełny tekst źródłaSapienza, Francis, Michael Parker, Mark Bodie i Sally Shoop. Vehicle modeling in Unreal Engine 4. Engineer Research and Development Center (U.S.), listopad 2023. http://dx.doi.org/10.21079/11681/47923.
Pełny tekst źródłaSakhare, Rahul Suryakant, Jairaj Desai, Jijo K. Mathew, Woosung Kim, Justin Mahlberg, Howell Li i Darcy M. Bullock. Evaluating the Impact of Vehicle Digital Communication Alerts on Vehicles. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317324.
Pełny tekst źródłaKwiat, Paul, Eric Chitambar, Andrew Conrad i Samantha Isaac. Autonomous Vehicle-Based Quantum Communication Network. Illinois Center for Transportation, wrzesień 2022. http://dx.doi.org/10.36501/0197-9191/22-020.
Pełny tekst źródłaRoth, Christian. Design of the In-vehicle Experience. SAE International, czerwiec 2022. http://dx.doi.org/10.4271/epr2022012.
Pełny tekst źródłaChien, Stanley, Lauren Christopher, Yaobin Chen, Mei Qiu i Wei Lin. Origin-Destination Vehicle Counts in Weaving Area Utilizing Existing Field Data. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317719.
Pełny tekst źródłaKontou, Eleftheria, Yen-Chu Wu i Jiewen Luo. Electric Vehicle Infrastructure Plan in Illinois. Illinois Center for Transportation, grudzień 2022. http://dx.doi.org/10.36501/0197-9191/22-023.
Pełny tekst źródłaEbken, John, Mike Bruch i Jason Lum. Applying Unmanned Ground Vehicle Technologies To Unmanned Surface Vehicles. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2005. http://dx.doi.org/10.21236/ada434099.
Pełny tekst źródłaSchexnayder, S. M. Environmental Evaluation of New Generation Vehicles and Vehicle Components. Office of Scientific and Technical Information (OSTI), luty 2002. http://dx.doi.org/10.2172/814410.
Pełny tekst źródłaIyer, Rakesh, Jarod Kelly i Amgad Elgowainy. Vehicle-Cycle Inventory for Medium- and Heavy-Duty Vehicles. Office of Scientific and Technical Information (OSTI), listopad 2021. http://dx.doi.org/10.2172/1831152.
Pełny tekst źródła