Rozprawy doktorskie na temat „Variétés symétriques”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 29 najlepszych rozpraw doktorskich naukowych na temat „Variétés symétriques”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Zeghib, Abdelghani. "Feuilletages géodésiques des variétés localement symétriques et applications". Dijon, 1985. http://www.theses.fr/1985DIJOSE42.
Pełny tekst źródłaCossutta, Mathieu. "Cohomologie de certaines variétés localement symétriques et correspondance theta". Paris 7, 2009. http://www.theses.fr/2009PA077065.
Pełny tekst źródłaThe results of this thesis are about the cohomology of some locally symetric manifolds of arithmetic type. In a first chapter we discuss the automorphic description of these cohomology groups in the framework of Arthur's conjectures. In a second and third chapter, using this description and the theta correspondance we construct new cohomology classes, generalising some previous work of Jian-Shu Li. In the fifth chapter using this cohomology classes we study the growth of Betti numbers in a tower of congruence coverings. The last chapter makes a link between these classes, totally geodesic submanifolds and L-functions
Estezet, Patrick. "Tenseurs symétriques à énergie nulle sur les variétés à courbure constante". Grenoble 1, 1988. http://www.theses.fr/1988GRE10099.
Pełny tekst źródłaBulois, Michaël. "Etude de quelques sous-variétés des algèbres de Lie symétriques semi-simples". Phd thesis, Université de Bretagne occidentale - Brest, 2009. http://tel.archives-ouvertes.fr/tel-00455626.
Pełny tekst źródłaBulois, Michaël. "Étude de quelques sous-variétés des algèbres de Lie symétriques semi-simples". Brest, 2009. http://www.theses.fr/2009BRES2042.
Pełny tekst źródłaLie algebras were introduced toward the end of nineteenth century in order to study some problems arising from geometry. In the interest of classifying these objects, the subcategory of semisimple Lie algebras has been studied. Symmetric Lie algebras are a generalisation of Lie algebras and there are connections between complex symmetric Lie algebras and real Lie algebras. There is an another level structure on (semisimple complex) Lie algebras. Denoting by G the algebraic adjoint group of g, we can conside g as a G-variety under the adjoint action M. We can then study some properties in the framework of algebraic geometry. One can then study various G-varieties arising from this setting. From a global perspective, I try to generalize or understand some properties of analogue varieties in symmetric Lie algebras
Jiang, Zhi. "Sur l'application d'albanese des variétés algébriques et le cône nef des produits symétriques de courbes". Université Paris Diderot (Paris 7), 2010. http://www.theses.fr/2010PA077037.
Pełny tekst źródłaIn the first part, I study irregular varieties and in particular, varieties with maximal Albanese dimension. For a general irregular variety X, I give an optimal condition on the plurigenera P_m(X) such that the Albanese map should be subjective and I also obtain a (more restrictive) still optimal condition on P_m(X) such that the Albanese map should be an algebraic fiber space. For a variety X of maximal Albanese dimension with some additional assumptions on P__m(X) and q(X), I describe (birationally) its geometry structure. Then I study morphisms between varieties of maxiaml Albanese dimension. I also make a remark about a work of Chen and Hacon (Pareschi and Popa) to show that for a varieties of maximal Albanese dimension, I6K_XI induces a model of its litaka fibration. In the second part, I study a very concrete problem: the structure of the nef cone of the symmetric product of a generic curve. There is an interesting theorem of Kouvidakis about this problem. I use a degeneration approach to study this problem. The ingredient is an idea due to Ein and Lazarsfeld which they used to study the Seshadri constants of surfaces. I can improve Kouvidakis'result
Le, Barbier Michael. "Variétés des réductions des groupes algébriques réductifs". Montpellier 2, 2009. http://www.theses.fr/2009MON20051.
Pełny tekst źródłaInspired by the construction by S. Mukai of a variety classifying Gauss reductions of a smooth projective quadric, A. Iliev and L. Manivel define the variety of reductions for a simple Jordan algebra. Study of these varieties bring up three new Fano varieties. General interset towards Fano varieties is two-fold: on the first side, their intrinsec geometry is remarkable, an the second side, they play a crucial part in birational geometry. New ones are however seldom found. I generalise this construction to reductive symmetric pairs, study some of their general properties and three small dimension examples. These varieties are projective, quasi-homogenous under the operation of the fixed point group of the symmetric pair. Points in the open orbit are the anisotropic, reductive, maximal subalgebras of the symmetric pair. In the general setup, I explain how the centralizer map, a rational map from the anisotropic space to the variety of reductions, parametrizes a smooth open subset, simplifies the study of combinatorial properties of the orbits in this open subset, and allows to slightly generalise to symmetric-pair's context the well-known description of the irregular locus of simple Lie algebras. I classify linear subspaces of the variety of reductions through a general point, and deduce, for the good cases, the positivity of the anticanonical class of the variety. Among studied examples lie two Fano varieties, one is a smooth 6-fold of index 2, the second is a singular normal 8-fold of index 3
Brunebarbe, Yohan. "Formes différentielles symétriques, variations de structures de Hodge et groupes fondamentaux des variétés complexes". Paris 7, 2014. http://www.theses.fr/2014PA077060.
Pełny tekst źródłaIn a first part we show that a compact Kâhler manifold whose fundamental group admits a linear representatior with infinite image possesses a non zero symmetric differential form. A crucial step is the study of the particula case where the linear representation is the monodromy of a variation of Hodge structures. In a second part we extend the results of positivity of the cotangent bundle of varieties supporting a non trivial variation of Hodge structures to non necessarily compact algebraic varieties. We gathered in a last part some applications of the results of the preceding parts to the study of complex surfaces with a big fundamental group
Gorsse, Bertrand. "Mesures p-adiques associées aux carrés symétriques". Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10150.
Pełny tekst źródłaWe consider the special values of a L-function, which are called symmetric square, associated to a primitive cusp form. Following Rankin's method, we can write the symmetric square as an integral involving products of Eisenstein series by certains classical modular forms of half-integral weight (1/2 or 3/2). We can view those products as polynomials in one variable R with coefficient power series in the variable q. We prove that the coefficients of the (q,R)-expansion satisfy Kummer's congruences from which we deduce other congruences for the special values of the symmetric square
Ettioutioui, Mhammed. "Espaces homogènes des géodésiques". Lyon 1, 1997. http://www.theses.fr/1997LYO10230.
Pełny tekst źródłaJbilou, Asma. "Équations hessiennes complexes sur des variétés kählériennes compactes". Nice, 2010. http://www.theses.fr/2010NICE4006.
Pełny tekst źródłaOn a compact connected 2m-dimensional Kähler manifold with Kähler form !, given a volume form 2 [!]m and an integer 1 < k < m, we want to solve uniquely in [!] the equation ˜!k ^!m−k = , relying on the notion of k-positivity for ˜! 2 [!] (the extreme cases are solved : k = m by Yau, k = 1 trivially). We solve by the continuity method the corresponding complex elliptic k-th Hessian equation under the assumption that the holomorphicbisectionalcurvatureofthemanifoldisnon-negative,requiredhereonlyto deriveanapriorieigenvaluespinching
Schäfer, Lars. "Geometrie tt* et applications pluriharmoniques". Nancy 1, 2006. http://www.theses.fr/2006NAN10041.
Pełny tekst źródłaIn this work we introduce the real differential geometric notion of a tt*-bundle (E,D,S), a metric tt*-bundle (E,D,S,g) and a symplectic tt*-bundle (E,D,S,omega) on an abstract vector bundle E over an almost complex manifold (M,J). With this notion we construct, generalizing Dubrovin, a correspondence between metric tt*-bundles over complex manifolds (M,J) and admissible pluriharmonic maps from (M,J) into the pseudo-Riemannian symmetric space GL(r,R)/O(p,q) where (p,q) is the signature of the metric g. Moreover, we show a rigidity result for tt*-bundles over compact Kähler manifolds and we obtain as application a special case of Lu's theorem. In addition we study solutions of tt*-bundles (TM,D,S) on the tangent bundle TM of (M,J) and characterize an interesting class of these solutions which contains special complex manifolds and flat nearly Kähler manifolds. We analyze which elements of this class admit metric or symplectic tt*-bundles. Further we consider solutions coming from varitations of Hodge structures (VHS) and harmonic bundles. Applying our correspondence to harmonic bundles we generalize a correspondence given by Simpson. Analyzing the associated pluriharmonic maps we obtain roughly speaking for special Kähler manifolds the dual Gauss map and for VHS of odd weight the period map. In the case of non-integrable complex structures, we need to generalize the notions of pluriharmonic maps and some results. Apart from the rigidity result we generalize all above results to para-complex geometry
Thirion, Xavier. "Sous-groupes discrets de SL(d,R) et équidistribution dans les espaces symétriques". Tours, 2007. http://www.theses.fr/2007TOUR4006.
Pełny tekst źródłaIn the first part, we consider a class of groups, called Ping-Pong groups on the projective space of Rd, and we prove a few properties of these groups. Then, we study the transfert operators that we associate to these groups. We deduce the asymptotic behaviour of the orbital function. In the second part, we study the asymptotic repartition of the orbit of a group in a symmetric space of SL(d,R). We introduce and study a Radon's measure, invariant with respect to the Weyl chambers' flow. We deduce the asymptotic behaviour of the orbital function of the lattices of SL(d,R) and the Ping-Pong groups of the flag space of Rd
Butruille, Jean-Baptiste. "Variétés de Gray et géométries spéciales en dimension 6". Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00118939.
Pełny tekst źródłaKloeckner, Benoit. "Géométrie des bords : compactifications différentiables et remplissages holomorphes". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2006. http://tel.archives-ouvertes.fr/tel-00120345.
Pełny tekst źródłaLa seconde partie concerne les remplissages holomorphes. On se donne une variété CR compacte M et un sous-groupe d'automorphismes F. La question est alors de déterminer quelles sont les variétés compactes à bord X dont le bord est M et telles que l'action de F se prolonge par biholomorphismes sur tout X. On montre sous des hypothèses de convexité, de dimension et de taille de F un résultat d'unicité (à éclatement près).
Roby, Simon. "Résonances du Laplacien sur les fibrés vectoriels homogènes sur des espaces symétriques de rang réel un". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0129.
Pełny tekst źródłaWe study the resonances of the Laplacian acting on the compactly supported sections of a homogeneous vector bundle over a Riemannian symmetric space of the non- compact type. The symmetric space is assumed to have rank-one but the irreducible representation τ of the maximal compact K defining the vector bundle is arbitrary. We determine the resonances. Under the additional assumption that τ occurs in the spherical principal series, we determine the resonance representations. They are all irreducible. We find their Langlands parameters, their wave front sets and determine which of them are unitarizable
Jbilou, Asma. "Equations hessiennes complexes sur des variétés kählériennes compactes". Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00463111.
Pełny tekst źródłaBoubel, Charles. "Sur l'holonomie des variétés pseudo-riemanniennes". Phd thesis, Université Henri Poincaré - Nancy I, 2000. http://tel.archives-ouvertes.fr/tel-00008842.
Pełny tekst źródłaFichou, Goulwen. "Nombres de Betti virtuels des ensembles symétriques par arcs et équivalence de Nash après éclatements". Phd thesis, Université d'Angers, 2003. http://tel.archives-ouvertes.fr/tel-00004279.
Pełny tekst źródłaLiu, Jie. "Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4038/document.
Pełny tekst źródłaThis thesis is devoted to the study of complex Fano varieties via the properties of subsheaves of the tangent bundle and the geometry of the fundamental divisor. The main results contained in this text are:(i) A generalization of Hartshorne's conjecture: a projective manifold is isomorphic to a projective space if and only if its tangent bundle contains an ample subsheaf.(ii) Stability of tangent bundles of Fano manifolds with Picard number one: by proving vanishing theorems on the irreducible Hermitian symmetric spaces of compact type M, we establish that the tangent bundles of almost all general complete intersections in M are stable. Moreover, the same method also gives an answer to the problem of stability of the restriction of the tangent bundle of a complete intersection on a general hypersurface.(iii) Effective non-vanishing for Fano varieties and its applications: we study the positivity of the second Chern class of Fano manifolds with Picard number one, this permits us to prove a non-vanishing result for n-dimensional Fano manifolds with index n-3. As an application, we study the anticanonical geometry of Fano varieties and calculate the Seshadri constants of anticanonical divisors of Fano manifolds with large index.(iv) Fundamental divisors of smooth Moishezon threefolds with Picard number one: we prove the existence of a smooth divisor in the fundamental linear system in some special cases
Chen, Jiaming. "Topology at infinity and atypical intersections for variations of Hodge structures". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7049.
Pełny tekst źródłaThis thesis studies topological and geometrical aspects of some interesting spaces springing from Hodge theory, such as locally symmetric varieties, and their generalization, Hodge varieties; and the period maps which take value in them.In Chapter 1 (joint work with Looijenga) we study the Baily-Borel compactifications of locally symmetric varieties and its toroidal variants, as well as the Deligne-Mumford compactification of the moduli of curves from a topological viewpoint. We define a "stacky homotopy type" for these spaces as the homotopy type of a small category and thus generalize an old result of Charney-Lee on the Baily-Borel compactificationof Ag and recover (and rephrase) a more recent one of Ebert-Giansiracusa on the Deligne-Mumford compactification. We also describe an extension of the period map for Riemann surfaces in these terms.In Chapter 2 (joint work with Looijenga) we give a relatively simple algebrogeometric proof of another result of Charney and Lee on the stable cohomology of the Satake-Baily-Borel compactification of Ag and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers.In Chapter 3 (themain chapter of this thesis) we study an atypical intersection problem for an integral polarized variation of Hodge structure V on a smooth irreducible complex quasi-projective variety S. We show that the union of the non-factor special subvarieties for (S,V), which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This proves a conjecture of Klingler
Pedon, Emmanuel. "Analyse harmonique des formes différentielles sur l'espace hyperbolique réel". Nancy 1, 1997. http://www.theses.fr/1997NAN10226.
Pełny tekst źródłaMenes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Pełny tekst źródłaLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Pacienza, Gianluca. "Courbes rationnelles et diviseurs nef pour certaines variétés génériques". Paris 6, 2001. http://www.theses.fr/2001PA066559.
Pełny tekst źródłaCampesato, Jean-Baptiste. "Une fonction zêta motivique pour l'étude des singularités réelles". Thesis, Nice, 2015. http://www.theses.fr/2015NICE4104/document.
Pełny tekst źródłaThe main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence
Shu, Cheng. "E-Polynomial of GLn⋊<σ>-character varieties". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7038.
Pełny tekst źródłaLet σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product GLn⋊<σ>. Let Y→X be a double covering of Riemann surfaces, which is exactly the unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering transformation is denoted by τ. To each puncture (removed ramification point), we prescribe a GLn(C)-conjugacy class contained in the connected component GLn(C).σ . And we require the collection C of these conjugacy classes to be generic. Our GLn(C)⋊<σ>-character variety is the moduli of the pairs (L,Φ), where L is a local system on Y and Φ:L → τ*L* is an isomorphism, whose monodromy at the punctures are determined by C. We compute the E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the problem to point-counting over finite fields. The counting formula involves the irreducible characters of GL_n(q)⋊<σ>, and so the l-adic character table of GL_n(q)⋊<σ> is determined along the way. The resulting polynomial is expressed as the in-ner product of certain symmetric functions associated to the wreath product (Z/2Z)^N⋊(S_N), with N=[n/2]
PIN, Stéphane. "Adhérences d'orbites des sous-groupes de Borel dans les espaces symétriques". Phd thesis, 2001. http://tel.archives-ouvertes.fr/tel-00000888.
Pełny tekst źródłaCHAPUT, Pierre-Emmanuel. "Géométrie de quelques algèbres et théorèmes d'annulation". Phd thesis, 2003. http://tel.archives-ouvertes.fr/tel-00007115.
Pełny tekst źródłaRuzzi, Alessandro. "Projectively normal complete symmetric varieties and Fano complete symmetric varieties". Phd thesis, 2006. http://tel.archives-ouvertes.fr/tel-00575974.
Pełny tekst źródła