Spis treści
Gotowa bibliografia na temat „Variétés symétriques”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Variétés symétriques”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Variétés symétriques"
Zeghib, A. "Feuilletages géodésiques des variétés localement symétriques". Topology 36, nr 4 (lipiec 1997): 805–28. http://dx.doi.org/10.1016/s0040-9383(96)00033-x.
Pełny tekst źródłaZeghib, A. "Ensembles invariants des flots géodésiques des variétés localement symétriques". Ergodic Theory and Dynamical Systems 15, nr 2 (kwiecień 1995): 379–412. http://dx.doi.org/10.1017/s0143385700008439.
Pełny tekst źródłaTholozan, Nicolas. "Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques". Annales de l’institut Fourier 65, nr 5 (2015): 1921–52. http://dx.doi.org/10.5802/aif.2977.
Pełny tekst źródłaKlingler, B. "Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes". Commentarii Mathematici Helvetici 76, nr 2 (1.06.2001): 200–217. http://dx.doi.org/10.1007/s00014-001-8320-0.
Pełny tekst źródłaTchoudjem, Alexis. "Sur la cohomologie à support des fibrés en droites sur les variétés symétriques complètes". Transformation Groups 15, nr 3 (23.07.2010): 655–700. http://dx.doi.org/10.1007/s00031-010-9105-6.
Pełny tekst źródłaVEROVIC, PATRICK. "Problème de l'entropie minimale pour les métriques de Finsler". Ergodic Theory and Dynamical Systems 19, nr 6 (grudzień 1999): 1637–54. http://dx.doi.org/10.1017/s0143385799151952.
Pełny tekst źródłaSabourin, Hervé, i Rupert W. T. Yu. "Sur l'irréductibilité de la variété commutante d'une paire symétrique réductive de rang 1". Bulletin des Sciences Mathématiques 126, nr 2 (luty 2002): 143–50. http://dx.doi.org/10.1016/s0007-4497(01)01091-0.
Pełny tekst źródłaBulois, Michaël. "Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple". Annales de l’institut Fourier 59, nr 1 (2009): 37–80. http://dx.doi.org/10.5802/aif.2426.
Pełny tekst źródłaGUÈYE, Ousmane. "DE L’ESPACE NATUREL À L’ESPACE IMAGÉ DANS LE RECUEIL DES FABLES DE LA FONTAINE". Liens, revue internationale des sciences et technologies de l'éducation 1, nr 4 (5.07.2023): 148–57. http://dx.doi.org/10.61585/pud-liens-v1n407.
Pełny tekst źródłaPawlowski, Brendan. "Cohomology classes of rank varieties and a counterexample to a conjecture of Liu". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (1.01.2015). http://dx.doi.org/10.46298/dmtcs.2462.
Pełny tekst źródłaRozprawy doktorskie na temat "Variétés symétriques"
Zeghib, Abdelghani. "Feuilletages géodésiques des variétés localement symétriques et applications". Dijon, 1985. http://www.theses.fr/1985DIJOSE42.
Pełny tekst źródłaCossutta, Mathieu. "Cohomologie de certaines variétés localement symétriques et correspondance theta". Paris 7, 2009. http://www.theses.fr/2009PA077065.
Pełny tekst źródłaThe results of this thesis are about the cohomology of some locally symetric manifolds of arithmetic type. In a first chapter we discuss the automorphic description of these cohomology groups in the framework of Arthur's conjectures. In a second and third chapter, using this description and the theta correspondance we construct new cohomology classes, generalising some previous work of Jian-Shu Li. In the fifth chapter using this cohomology classes we study the growth of Betti numbers in a tower of congruence coverings. The last chapter makes a link between these classes, totally geodesic submanifolds and L-functions
Estezet, Patrick. "Tenseurs symétriques à énergie nulle sur les variétés à courbure constante". Grenoble 1, 1988. http://www.theses.fr/1988GRE10099.
Pełny tekst źródłaBulois, Michaël. "Etude de quelques sous-variétés des algèbres de Lie symétriques semi-simples". Phd thesis, Université de Bretagne occidentale - Brest, 2009. http://tel.archives-ouvertes.fr/tel-00455626.
Pełny tekst źródłaBulois, Michaël. "Étude de quelques sous-variétés des algèbres de Lie symétriques semi-simples". Brest, 2009. http://www.theses.fr/2009BRES2042.
Pełny tekst źródłaLie algebras were introduced toward the end of nineteenth century in order to study some problems arising from geometry. In the interest of classifying these objects, the subcategory of semisimple Lie algebras has been studied. Symmetric Lie algebras are a generalisation of Lie algebras and there are connections between complex symmetric Lie algebras and real Lie algebras. There is an another level structure on (semisimple complex) Lie algebras. Denoting by G the algebraic adjoint group of g, we can conside g as a G-variety under the adjoint action M. We can then study some properties in the framework of algebraic geometry. One can then study various G-varieties arising from this setting. From a global perspective, I try to generalize or understand some properties of analogue varieties in symmetric Lie algebras
Jiang, Zhi. "Sur l'application d'albanese des variétés algébriques et le cône nef des produits symétriques de courbes". Université Paris Diderot (Paris 7), 2010. http://www.theses.fr/2010PA077037.
Pełny tekst źródłaIn the first part, I study irregular varieties and in particular, varieties with maximal Albanese dimension. For a general irregular variety X, I give an optimal condition on the plurigenera P_m(X) such that the Albanese map should be subjective and I also obtain a (more restrictive) still optimal condition on P_m(X) such that the Albanese map should be an algebraic fiber space. For a variety X of maximal Albanese dimension with some additional assumptions on P__m(X) and q(X), I describe (birationally) its geometry structure. Then I study morphisms between varieties of maxiaml Albanese dimension. I also make a remark about a work of Chen and Hacon (Pareschi and Popa) to show that for a varieties of maximal Albanese dimension, I6K_XI induces a model of its litaka fibration. In the second part, I study a very concrete problem: the structure of the nef cone of the symmetric product of a generic curve. There is an interesting theorem of Kouvidakis about this problem. I use a degeneration approach to study this problem. The ingredient is an idea due to Ein and Lazarsfeld which they used to study the Seshadri constants of surfaces. I can improve Kouvidakis'result
Le, Barbier Michael. "Variétés des réductions des groupes algébriques réductifs". Montpellier 2, 2009. http://www.theses.fr/2009MON20051.
Pełny tekst źródłaInspired by the construction by S. Mukai of a variety classifying Gauss reductions of a smooth projective quadric, A. Iliev and L. Manivel define the variety of reductions for a simple Jordan algebra. Study of these varieties bring up three new Fano varieties. General interset towards Fano varieties is two-fold: on the first side, their intrinsec geometry is remarkable, an the second side, they play a crucial part in birational geometry. New ones are however seldom found. I generalise this construction to reductive symmetric pairs, study some of their general properties and three small dimension examples. These varieties are projective, quasi-homogenous under the operation of the fixed point group of the symmetric pair. Points in the open orbit are the anisotropic, reductive, maximal subalgebras of the symmetric pair. In the general setup, I explain how the centralizer map, a rational map from the anisotropic space to the variety of reductions, parametrizes a smooth open subset, simplifies the study of combinatorial properties of the orbits in this open subset, and allows to slightly generalise to symmetric-pair's context the well-known description of the irregular locus of simple Lie algebras. I classify linear subspaces of the variety of reductions through a general point, and deduce, for the good cases, the positivity of the anticanonical class of the variety. Among studied examples lie two Fano varieties, one is a smooth 6-fold of index 2, the second is a singular normal 8-fold of index 3
Brunebarbe, Yohan. "Formes différentielles symétriques, variations de structures de Hodge et groupes fondamentaux des variétés complexes". Paris 7, 2014. http://www.theses.fr/2014PA077060.
Pełny tekst źródłaIn a first part we show that a compact Kâhler manifold whose fundamental group admits a linear representatior with infinite image possesses a non zero symmetric differential form. A crucial step is the study of the particula case where the linear representation is the monodromy of a variation of Hodge structures. In a second part we extend the results of positivity of the cotangent bundle of varieties supporting a non trivial variation of Hodge structures to non necessarily compact algebraic varieties. We gathered in a last part some applications of the results of the preceding parts to the study of complex surfaces with a big fundamental group
Gorsse, Bertrand. "Mesures p-adiques associées aux carrés symétriques". Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10150.
Pełny tekst źródłaWe consider the special values of a L-function, which are called symmetric square, associated to a primitive cusp form. Following Rankin's method, we can write the symmetric square as an integral involving products of Eisenstein series by certains classical modular forms of half-integral weight (1/2 or 3/2). We can view those products as polynomials in one variable R with coefficient power series in the variable q. We prove that the coefficients of the (q,R)-expansion satisfy Kummer's congruences from which we deduce other congruences for the special values of the symmetric square
Ettioutioui, Mhammed. "Espaces homogènes des géodésiques". Lyon 1, 1997. http://www.theses.fr/1997LYO10230.
Pełny tekst źródła